Surface Methane Monitoring Annual Report 2021

SUBMITTED TO:

DTG Recycling Group

41 Rocky Top Road, Yakima, WA, 98908

1100 Jadwin Avenue, Ste. 250, Richland, WA, 99352

January 10, 2022

INTRODUCTION

This report summarizes field activities and analytical results associated with the five quarterly surface methane monitoring events conducted December 9, 2020, through December 3, 2021, at the DTG Recycling Group landfill, located at 41 Rocky Top Road, in Yakima, Washington. Methane monitoring activities were conducted by Freestone Environmental Services (Freestone) on the following dates:

- December 9, 2020
- March 15, 2021
- June 11, 2021
- October 8, 2021
- December 3, 2021

Quarterly methane monitoring was conducted using a Landtec GEM[™] 5000 (GEM5000) instrument for the December 9, 2020 monitoring event and a SEM[™] 5000 (SEM5000) instrument for the four 2021 monitoring events. After the first quarterly monitoring event on December 9, 2020, Freestone switched from the GEM5000 to the SEM5000 instrument to achieve increased methane concentration sensitivity.

SUMMARY OF FIELD AND MONITORING ACTIVITIES

Prior to each quarterly surface monitoring event, a field check of the monitoring instrument was performed with a 1,250-ppm methane calibration gas. In addition, one fresh air reading was collected upwind of the landfill to determine the background methane concentration. The location of the background monitoring location is shown on Figure 1. The field check and background monitoring results for each quarterly methane monitoring event can be found in Table 1.

In accordance with the DTG Operations Plan, five (5) pre-determined locations within the perimeter of the landfill property boundary were monitored on December 9, 2020 and March 15, 2021 (Figure 1). Prior to the 2021 second quarter monitoring event, an additional ten (10) monitoring locations were added at the request of the Yakima Health district for a total of fifteen (15) monitoring locations within the perimeter of the landfill property boundary (Figure 1). The 15 locations were monitored during the June 11, 2021, October 8, 2021, and December 3, 2021, quarterly monitoring events. Results of the five monitoring events are presented in Table 1.

Monitoring was conducted by doing a surface sweep over the ground surface with the GEM5000 or SEM5000 instrument. The inlet of the instrument was positioned between 2 and 4 inches above ground surface.

A methane action level of 1,250 ppm has been established for the DTG site. According to the Operations Plan, locations with methane readings of 1,250 ppm will be marked and recorded on

the map. As shown in Table 1, the action level was not exceeded during any of the quarterly monitoring events.

Figure 1. Quarterly Surface Monitoring Locations

2021 ANNUAL SURFACE METHANE MONITORING REPORT DTG Recycling Group

Data			ne Monitoring Results	Mothana (nam)
Date	Instrument	Time	Test/Location	Methane (ppm)
	GEM5000	0805	Background	0
	-	0806	1250 ppm calibration gas	1000
	-	0848	#1	0
12/09/2020	-	0812	#2	0
	-	0819	#3	0
	-	0825	#4	0
		0836	#5	0
	SEM5000	0813	Background	2.1
	-	0815	1250 ppm calibration gas	1250.3
	-	0820	#1	2.0
3/15/2021	-	0825	#2	2.0
	-	0829	#3	2.0
	-	0833	#4	2.1
		0839	#5	2.1
	SEM5000	0809	1250 ppm calibration gas	1255.0
	-	0810	Background	2.4
	-	0822	#1	2.2
		0834	#2	2.2
	-	0838	#3	2.2
6/11/2021	-	0842	#4	2.3
	-	0845	#5	2.2
	-	0850	#6	2.2
	-	0855	#7	2.2
	-	0904	#8	2.6
	-	0910	#9	2.6
	-	0915	#10	2.6
	-	0923	#11	2.4
	-	0928	#12	2.4
	-	0945	#13	2.2
	-	0935	#14	2.2
	-	0940	#15	2.2
	SEM5000	0810	Background	2.3
	SENISOUU	0815	1250 ppm calibration gas	1030.0
	-	0825	#1	2.4
	-	0855	#2	2.2
		0900	#3	2.3
		0905	#4	2.3
10/8/2021		0905	#5	2.4
		0910	#6	2.4
		0915	#7	2.3
		0920	#8	2.3
		0830	#9	2.5
		0935	#10	2.5

Table 1. Methane Monitoring Results

December 9, 2021 HWA Project No. 2005-120 Task 2000

DTG Recycling Group

16504 9th Ave SE Suite 201 Mill Creek, WA 98012

Attention: Mr. John Martin

Subject: FIELD SAMPLING AND LABORATORY TESTING REPORT ROAD AND WORK AREA SURFACE DUST SAMPLING AND TESTING DTG/Yakima Limited Purpose Landfill Yakima, Washington

Dear Mr. Martin.

In accordance with your request, HWA GeoSciences Inc. (HWA) performed field sampling and laboratory testing for the above referenced project. Herein we present a summary of our field activities and the results of our laboratory analyses. HWA conducted this sampling and testing program in accordance our scope based on procedures outlined in AP 42, Appendix C.1 and C.2, proposed and approved by DTG on November 18, 2021. The laboratory testing program was performed in general accordance with the guidelines in AP 42, Appendix C.2 and the appropriate ASTM Standards.

FIELD SAMPLING: Field samples were obtained at the Yakima Limited Purpose Landfill on November 30, 2021, by a geologist from HWA GeoSciences, Inc. Samples were obtained at five locations comprised of; three roadway locations (RS), and two work area surface (WAS) locations as shown on Figure A-1 in Appendix A. Each laboratory test sample consisted of a composite of 2 to 4 field samples obtained at each proposed test location. A field report describing activities during sampling at each location is presented in Appendix A along with photographs of selected site conditions during sampling. HWA conducted the field sampling under the observation of a representative of Yakima County Clean Air Agency.

SAMPLE INFORMATION: fifteen field samples were obtained to represent conditions at five locations consisting of either road surface or work area dust materials. Field samples were combined into five laboratory test samples representing surface dust material from each road surface(RS) and work area(WAS) and then split to test mass using a riffle-splitter in general accordance with ASTM D2013.

RS-1	Brown, well-graded SAND with silt and gravel (SW-SM)
RS-2	Brown, well-graded SAND with gravel (SW)
RS-3	Light yellowish brown, well-graded SAND with silt and gravel (SW-SM)
WAS-1	Light yellowish brown, well-graded SAND with gravel (SW)
WAS-2	Brown, well-graded SAND with gravel (SW)

Based on manual-visual methods, the soils descriptions for the test samples are as follows:

Testing Methodology

MOISTURE CONTENT OF SOIL: The moisture content of the sample was determined in general accordance with ASTM D 2216. The indicated moisture content of the material is percentage by dry weight of soil. The results are shown on the Sieve Analysis of Aggregate Plots, Figures 1 through 5 and Table 1 below.

SIEVE ANALYSIS OF AGGREGATE: The particle size distribution of each sample was determined by dry sieving, in general accordance with ASTM C-136 as modified in Appendix C.2 which requires sieve shaking for 10-minute intervals until the difference between two successive pan weights is less than 3%. All the samples evaluated were shaken for 4 intervals of 10 minutes (40 minutes total) which is the maximum allowed per Appendix C.2, Section C.2.3, procedural step 7. The results are reported on the attached Figures 2 to 6 and Table 1 below.

Sample Designation	Unified Soil Classification	Moisture Content % by dry weight	Percent Passing the US. No. 200 Sieve
RS-1	SW-SM	4.4	5.3
RS-2	SW	3.2	4.5
RS-3	SW-SM	3.8	6.8
WAS-1	SW	5.7	2.4
WAS-2	SW	10.4	3.6

Table 1Summary of Laboratory Testing

-0.0-----

CLOSURE: Experience has shown that test values on soil and other natural materials vary with each representative sample. As such, HWA has no knowledge as to the extent and quantity of material the tested samples may represent. HWA obtained samples in general accordance with the procedures outlined in AP 42 Appendix C.1, in an attempt to obtain samples representative of specific areas. However, HWA makes no warranty as to how representative either the samples evaluated, or the test results obtained are to field conditions outside of the specified sample areas.

No copy should be made of this report except in its entirety.

We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service, please call.

HWA GEOSCIENCES INC.

Steven E. Greene, L.G., L.E.G. Principal Engineering Geologist

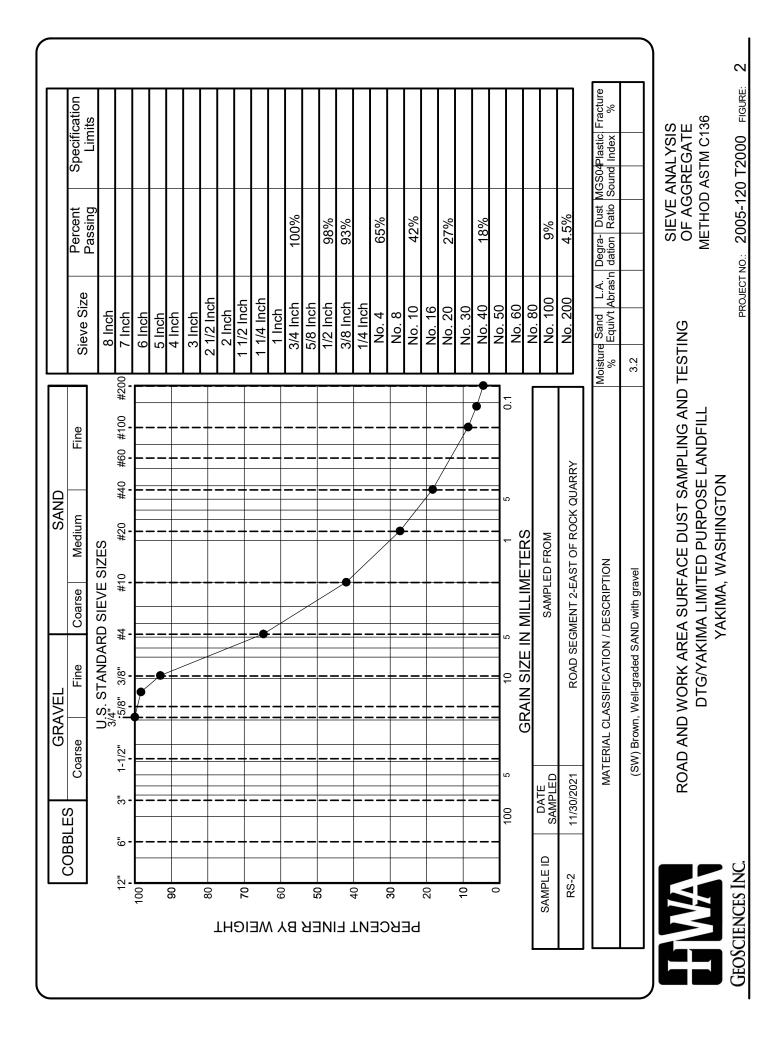
mittudes_

Rick Mueller, G.I.T. Geologist

Attachments:

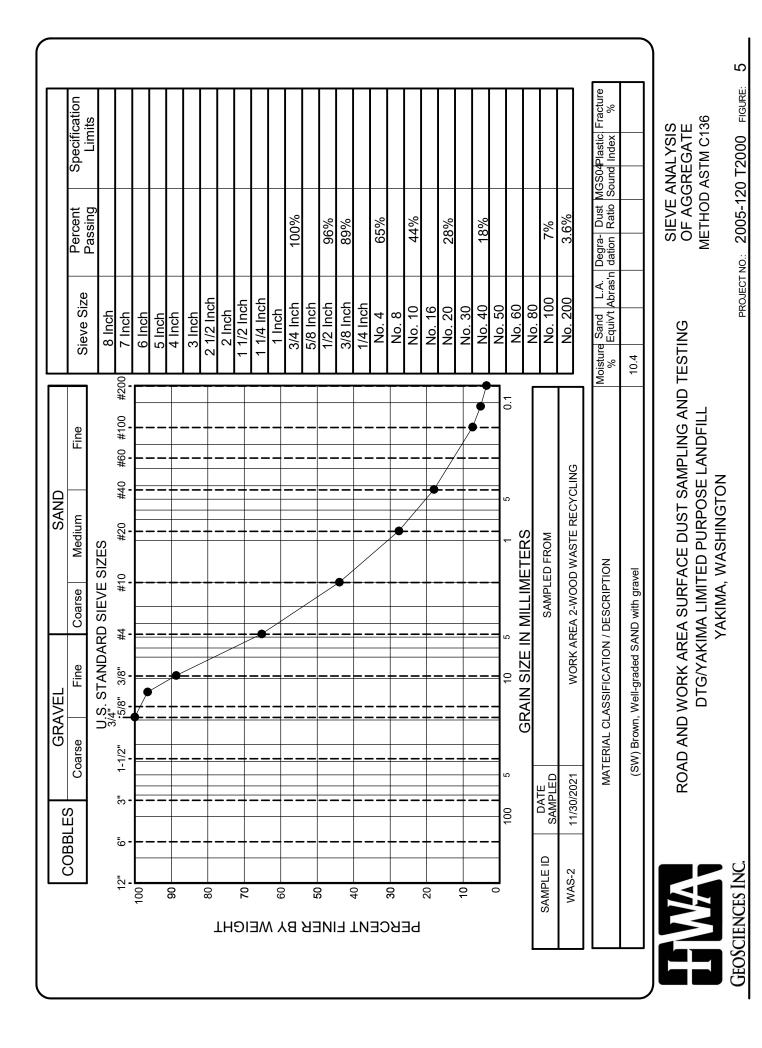
Figures 1 through 5 Sieve Analysis of Aggregate

Appendix A


. . .

Field Sampling Report

aCC		GRAVEI	AVEL		SAND				
		Coarse	Fine	Coarse	Medium	Fine	Sieve Size	Percent	Specification
		Ū.	S. STANDA	RD SIEVE :	SIZES		4 4 0	rassing	LIMITS
12" (1-1/2" 3/	3/4" [5/8" 3/8" #4 #10	#4 #10	#20	#40 #60 #100 #2	#200 7 Inch		
100							6 Inch		
			•				5 Inch		
6				+-			4 Inch		
							3 Inch		
80					•	·	2 1/2 Inch		
LH							2 Inch		
2 2 3							1 1/2 Inch		
- NE		_					1 1/4 Inch		
	• • •		• • •				1 Inch		
				/			3/4 Inch	100%	
<u>з</u> ЕК							5/8 Inch		
				• 			1/2 Inch	98%	
Э Э	;						3/8 Inch	92%	
							1/4 Inch		
; CE							No. 4	68%	
ਭ ਅ							No. 8		
						,	No. 10	47%	
20							No. 16		
					(No. 20	32%	
10							No. 30		
c							No. 40	21%	
	100	5	-10	2	1	- 0.1	No. 50		
		ច	GRAIN SIZE IN MILLIMETERS	IN MILLIMI	ETERS		No. 60		
SAMPLE ID	DATE SAMPI FD			SAMPLE	SAMPLED FROM		No. 100	10%	
RS-1	11/30/2021		ROAD SEGMENT		1-SOUTHEAST OF WOOD WASTE AREA.	VASTE AREA.	No. 200	5.3%	
							Maintural Sand A		COMPloation Eraction
	2	ATERIAL CI	MATERIAL CLASSIFICATION	N / DESCRIPTION	NOI		% Equiv't Abras'n dation		Ratio Sound Index %
	-MS)	SM) Brown, \	(SW-SM) Brown, Well-graded SAND with silt and gravel	ND with silt an	d gravel		4.4		
¥W	Г Ж	DAD ANE) WORK ARI DTG/YAKI	REA SURF,	ACE DUST 5 ED PURPOS	ROAD AND WORK AREA SURFACE DUST SAMPLING AND TESTING DTG/YAKIMA LIMITED PURPOSE LANDFILL	TESTING	SIEVE A OF AGG METHOD	SIEVE ANALYSIS OF AGGREGATE METHOD ASTM C136
				YAKIMA	VAKIMA WASHINGTON	ZC			


PROJECT NO.: 2005-120 T2000 FIGURE: 1

GEOSCIENCES INC.

COBLES Carse Redum Fine SAND File Coarse Medium Fine SaND File Coarse Medium File Sine File Coarse Medium File Sine File Sine File Coarse Medium File Sine File Sine File File File File File File File Fil	SAND	Fine Sieve Size Percent Sp	8 Inch	#40 #60 #100 #200 7 Inch	6 Inch	5 Inch	4 Inch	3 Inch	2 1/2 Inch	2 Inch	1 1/2 Inch	1 1/4 Inch	i i i 1 Inch 100%	3/4 Inch 97%	i i i 5/8 Inch	1/2 Inch 90%	i i 3/8 Inch 85%	I I No. 4 62%	No. 8	A 1 No. 10 44%	No. 16	No. 20 32%	No. 30	No. 40 24%	5 0.1 No. 50	O. No	No. 80 12% No. 12%	No. 200	Moisture Sand L.A. Degra- Dust MGS04Plastic Fracture % Equiv't Abras'n dation Ratio Sound Index %	el 3.8 3.6	T SAMPLING AND TESTING OF AGGREGATE	
	SA	Medi) SIEVE SIZES	#10													•								~	MILLIMETERS	SAMPLED FROM	ENT 3- ENTRY INTO WO	DESCRIPTION	d SAND with silt and grav	A SURFACE DUS	
	GRAVEL		U.S. STANDARI	5/8" 3/8"				•																		GRAIN SIZF IN		ROAD SEGM	RIAL CLASSIFICATION /	llowish brown, Well-grade	AND WORK ARE	
	(. ۵					• • •		• •		• •		•			 					- -				DATE	11/30/2021	MATE	SW-SM) Light ye	ROAE	

-2- 				0			
	- Coarse	e Fine	Coarse	Medium Fine	Sieve Size	Percent	Specification
		U.S. STANDAI	RD SIEVE SI	ZES	8 Inch	Lassing	
-	3" 1-1/2"	3/4" [5/8" 3/8"	#4 #10	#20 #40 #60 #100	#200		
100					6 Inch		
					5 Inch		
00		•			4 Inch		
	•				3 Inch		
80					2 1/2 Inch		
					2 Inch		
2 2 3	<u>-</u> .				1 1/2 Inch		
=					1 1/4 Inch		
					1 Inch		
					3/4 Inch	100%	
н С	(·		·	5/8 Inch		
			_		1/2 Inch	88%	
	•	•	/		3/8 Inch	79%	
					1/4 Inch		
					No. 4	52%	
ਸ 2013					No. 8		
					No. 10	32%	
20					No. 16		
					No. 20	20%	
10					No. 30		
					No. 40	12%	
	100 F		- - -		01 No. 50		
_			N MILLIME.		No.		
	DATE				No. 80		
	SAMPLED		SAMPLED FROM	FROM	No. 100	5%	
WAS-1	11/30/2021	WORK AREA 1-C	ONSTRUCTION	WORK AREA 1-CONSTRUCTION DEMOLITION DEBRIS AREA	No. 200	2.4%	
	MATERI	MATERIAL CLASSIFICATION	I / DESCRIPTION	Z	Moisture Sand L.A. Degra- % Equiv't Abras'n dation		Dust MGS04Plastic Fracture Ratio Sound Index %
	(SW) Light yel	(SW) Light yellowish brown, Well-graded SAND with gravel	aded SAND with	ı gravel	5.7		
						SIEVE A	NAL YSIS
	ROAD	AND WORK AR DTG/YAK	EA SURFA IMA LIMITE ΥΔΚΙΜΔ_Ν	ROAD AND WORK AREA SURFACE DUST SAMPLING AND TESTING DTG/YAKIMA LIMITED PURPOSE LANDFILL VAKIMA WASHINGTON	AND TESTING -L	OF AGG METHOD ,	OF AGGREGATE METHOD ASTM C136

APPENDIX A

Field Sampling Report

DTG Anderson Road and Working Area Dust Collection

Conducted: 11-30-2021 by Rick Mueller/HWA GeoSciences, Inc.

Upon my arrival to DTG Anderson Rock and Demolition pit, just northwest of Yakima, WA, I met with Brooks Taylor of DTG and Wade Porter of Yakima Regional Clean Air Agency. Brooks Taylor familiarized me with the operations within the pit and directed me to sampling locations proposed by HWA. Wade Porter was on site to observe HWA's sample collection methodology and assure that samples were taken in representative areas.

Work Area 1 (WAS 1.1 through 1.3)

The first location that samples were acquired was an area that DTG uses to bury miscellaneous construction demolition waste such as plastics and insulation. For the working area samples (WAS), a 15'x15' square was marked out and split into four equal quadrants of 7.5'x7.5'. From each quadrant, a 1-foot-wide area was swept from one end of the quadrant to the other. Material was collected using a broom and an enclosed dustpan. The material was transported from the dustpan and into a Ziploc storage bag. Three locations were chosen within the first working area. Samples collected were WAS 1.1, WAS 1.2 and WAS 1.3. These samples will be combined in HWA's lab prior to testing. Material collected appeared to consist of imported crushed gravel and possibly some native soils. While sampling, trucks coming in from outside of the site were dumping construction waste and a haul truck, excavator and dozer from within the site were tracking around the areas sampled.

Work Area 2 (WAS 2.1 through 2.4)

The second location was a working area where wood debris is stored. Three more 15'x15' squares were marked out and split into quadrants, with a 1-foot-wide swath swept from each quadrant. Wade Porter with YRCAA requested an additional sample be taken from an area that appeared to differ from the rest within the working area, possibly underlain with imported gravel while the majority of the working area surface was covered in wood debris and possibly native soils. Samples were collected using the same methods as WAS 1, and labelled WAS 2.1, WAS 2.2, WAS 2.3 and WAS 2.4. The samples will be combined in HWA's lab prior to testing. There was limited traffic through the working area during HWA's time on site, though it appeared trucks hauling wood debris travelled through the area to dump and haul trucks from within the DTG site travelled through the area.

Road Sample 1 (RS 1.1 through RS 1.3)

The third location sampled was a unpaved compacted soil and gravel road used to transport material between different locations on site. For roadway samples (RS) two grade stakes were measured 1-foot apart on each side of the road with a string around each stake, crossing the road to mark out a 1-foot-wide section across the entire width of the road. Samples were collected using the same methods as WAS 1 and WAS 2. Three of these areas were sampled, resulting in samples RS 1.1, RS 1.2 and RS 1.3. These samples will be combined in HWA's lab prior to testing. Haul trucks made frequent trips through the area, hauling soil and gravel to the first working area.

DTG Anderson Road and Working Area Dust Collection

Conducted: 11-30-2021 by Rick Mueller/HWA GeoSciences, Inc.

Road Sample 2 (RS 2.1 through 2.3)

The fourth location sampled was a compacted soil and gravel road used to transport material between different locations on site. For roadway samples (RS) two grade stakes were measured 1-foot apart on each side of the road with a string around each stake, crossing the road to mark out a 1-foot-wide section across the entire width of the road. Samples were collected using the same methods as described above. Three of these areas were sampled, resulting in field samples RS 2.1, RS 2.2 and RS 2.3. These samples will be combined in HWA's lab prior to testing. Haul trucks made frequent trips through the area, transporting soil and gravel to the first working area.

Road Sample 3 (RS 3.1 and 3.2)

The fifth and final location sampled was a compacted soil and gravel road used to transport material between different locations on site. For roadway samples (RS) two grade stakes were measured 1-foot apart on each side of the road with a string around each stake, crossing the road to mark out a 1-foot-wide section across the entire width of the road. Samples were collected using the same methods as described above. Two of these areas were sampled (RS 3.1 and RS 3.2) rather than 3, as suggested by Wade Porter, due to safety concerns in order to minimize time spent within the roadway, which supported heavy traffic. These samples will be combined in HWA's lab prior to testing. Trucks bringing construction waste in from outside of site were travelling through the area as well as haul trucks transporting dirt and gravel from within the site.

Figure A-1. Sample Location Aerial Map, sample locations recorded via GPS.

DTG Anderson Road and Working Area Dust Collection

Conducted: 11-30-2021 by Rick Mueller/HWA GeoSciences, Inc.

Figure A-2. Location of WAS1.1 after sampling. Each quadrant is 7.5'x7.5'. A one-foot-wide swath was swept across each quadrant. Facing Southeast.

Figure A-3. WAS1.3, facing west.

Figure A-4. WAS2.1. Note woody debris on ground within sample area. Facing northwest.

Figure A-5. WAS2.2. Facing west.

Figure A-6. WAS2.3

Figure A-7. RS1.1 marked out, prior to sample collection. Facing East.

Figure A-8. RS1.1 Marked out, after sample collection. Facing East.

Figure A-9. Location of RS1.2 prior to collection. Facing west.

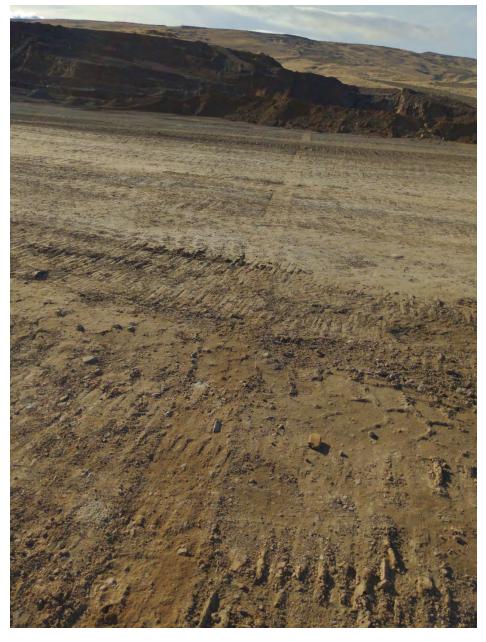


Figure A-10. Location of RS1.3 after collection. Facing west.

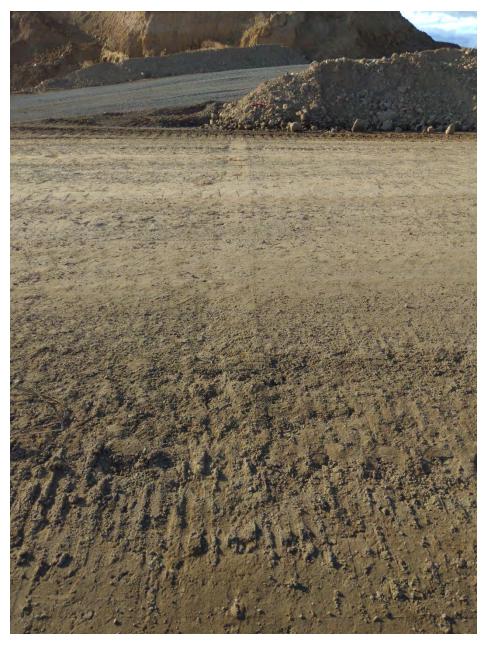


Figure A-11. Location of RS2.1 after collection. Facing west.

Figure A-12. Location of RS2.2 after collection. Facing north

Figure A-13. Location of RS2.3 after collection. Facing Northeast.

Figure A-14. Photo showing collection of a road sample courtesy of Wade Porter.

Figure A-15. Photo showing sample storage procedure, courtesy of Wade Porter.

		0940	#11	2.2
		0945	#12	2.3
		0950	#13	2.3
		0953	#14	2.3
		0958	#15	2.3
	SEM5000	0810	Background	2.3
		0815	1250 ppm calibration gas	1030.0
		0825	#1	2.4
		0855	#2	2.2
		0900	#3	2.3
		0905	#4	2.3
		0910	#5	2.4
		0915	#6	2.1
12/3/2021		0920	#7	2.3
		0850	#8	2.3
		0930	#9	2.5
		0935	#10	2.5
		0940	#11	2.2
		0945	#12	2.3
		0950	#13	2.3
		0953	#14	2.3
		0958	#15	2.3

2021 ANNUAL SURFACE METHANE MONITORING REPORT DTG Recycling Group

REPORTING

Following each monitoring event, Freestone prepared and submitted a quarterly report to DTG. For the five quarterly events included in this annual report, quarterly reports were submitted on December 21, 2020, March 18, 2021, June 15, 2021, October 12, 2021, and December 7, 2021.

CONCLUSION

Landfill gas monitoring and quarterly report preparation and submittal was performed for five monitoring events during the period of December 9, 2020 through December 3, 2021. Methane concentrations measured at each of the predetermined monitoring locations were below the DTG Operations Plan methane action level of 1250 ppm for all monitoring events. As such, no action or follow-up monitoring was necessary.

From:	lan Sutton <lsutton@parametrix.com></lsutton@parametrix.com>
Sent:	Thursday, December 23, 2021 3:54 PM
То:	Hasan Tahat
Subject:	Automatic reply: DTG Recycle - Yakima field sampling and lab test report

I will have limited access to phone and email through Friday, December 24, but will be checking messages as available. If immediate assistance in needed, please contact Dwight Miller at <u>dmiller@parametrix.com</u>, or 206.394.3644.

Regards, Ian

From:	John Martin <john@dtgrecycle.com></john@dtgrecycle.com>
Sent:	Tuesday, December 14, 2021 1:08 PM
То:	Hasan Tahat
Cc:	Wade Porter; Ian Sutton; Alan Butler
Subject:	DTG Recycle - Yakima field sampling and lab test report
Attachments:	2021.12.09 - Field Sampling and Lab Testing Report.pdf

Hasan,

Please find attached the field sampling and lab test report for the silt sampling at the DTG Recycle – Yakima facility. Please let me know if you have any questions, and we can set up a call with Parametrix.

Thanks,

John

John Martin Associate General Counsel

Desk 425.523.8385 | Cell 425.408.2186 john@dtgrecycle.com P.O. Box 14203 Mill Creek, WA 98082

Maltby • Port of Tacoma • Redmond • Renton • Seattle • Tacoma • Woodinville • Yakima

From:	Hasan Tahat
Sent:	Tuesday, March 1, 2022 3:56 PM
То:	Wade Porter
Subject:	FW: DTG Recycle - Yakima soil gas and ambient air sampling report - February 2022
Attachments:	Sampling Summary_Jan2022.pdf

Take a look at his and let's discuss. Thanks.

From: Rivard, James (ECY) [mailto:JRIV461@ECY.WA.GOV]
Sent: Tuesday, March 1, 2022 3:28 PM
To: Hasan Tahat
Cc: Park, Sage (ECY); Davies, Laurie (ECY); Ted Silvestri (YHD); Shawn Magee
Subject: FW: DTG Recycle - Yakima soil gas and ambient air sampling report - February 2022

Hello Hasan,

We received the attached today.

Our engineering and technical staff will be reviewing. But, we'd appreciate any review / advisement by YRCAA as the regional clean air agency as well. A couple of things jump out right away and raise questions. 1) Temperature readings of 149 F just below the surface and 2) VOCs.

Perhaps your staff, our staff, and YHD can speak via a telephone conference call here in a week or so after we have had time to read through the information.

Thanks, James

From: John Martin <john@dtgrecycle.com>

Sent: Tuesday, March 1, 2022 10:52 AM

To: Rivard, James (ECY) <JRIV461@ECY.WA.GOV>; Shawn Magee <shawn.magee@co.yakima.wa.us> Cc: Ted Silvestri (YHD) <ted.silvestri@co.yakima.wa.us>; Brandon Comfort (YHD) <brandon.comfort@co.yakima.wa.us>; Grieves, Kimberly <ksar461@ECY.WA.GOV>; LeMond, Luke (ECY) <llem461@ECY.WA.GOV>; Rounds, Megan (ECY) <MROU461@ECY.WA.GOV>; Ian Sutton <isutton@parametrix.com>; Arnie Sugar <asugar@hwageo.com>; Dwight Miller <DMiller@parametrix.com>; Dan Guimont <dguimont@dtgrecycle.com>; Tom Vaughn <TVaughn@dtgrecycle.com> Subject: DTG Recycle - Yakima soil gas and ambient air sampling report - February 2022

THIS EMAIL ORIGINATED FROM OUTSIDE THE WASHINGTON STATE EMAIL SYSTEM - Take caution not to open attachments or links unless you know the sender AND were expecting the attachment or the link

James and Shawn,

Attached is the February 2022 Soil Gas and Ambient Air Sampling Report prepared by Freestone Environmental Services from the December 8, 2021, and January 21, 2022, sampling events at the LPL. As noted in the report, any concentration of contaminants identified at the odor location dissipates quickly. Concentrations in the ambient air are low, and points of compliance at the property boundary are particularly low.

As we have previously mentioned, we would like to begin applying final cover to further reduce odors. We are prepared to begin this and plan to start immediately.

On another note, Arnie at HWA and Scott Cave, who has been acting as the neighbors' representative, are collaborating closely, and so far we have mutually identified and agreed on up to twenty wells to measure. Measurements are tentatively scheduled for 3/11 - 3/16.

(f) (in) (o)

Thank you,

John

John Martin Associate General Counsel

Desk 425.523.8385 | Cell 425.408.2186 john@dtgrecycle.com P.O. Box 14203 Mill Creek, WA 98082

www.dtgrecycle.com www.bigbluebag.com

Maltby • Port of Tacoma • Redmond • Renton • Seattle • Tacoma Whidbey Island • Woodinville • Yakima

From:	Rivard, James (ECY) <jriv461@ecy.wa.gov></jriv461@ecy.wa.gov>
Sent:	Tuesday, March 1, 2022 3:28 PM
То:	Hasan Tahat
Cc:	Park, Sage (ECY); Davies, Laurie (ECY); Ted Silvestri (YHD); Shawn Magee
Subject:	FW: DTG Recycle - Yakima soil gas and ambient air sampling report - February 2022
Attachments:	Sampling Summary_Jan2022.pdf

Hello Hasan,

We received the attached today.

Our engineering and technical staff will be reviewing. But, we'd appreciate any review / advisement by YRCAA as the regional clean air agency as well. A couple of things jump out right away and raise questions. 1) Temperature readings of 149 F just below the surface and 2) VOCs.

Perhaps your staff, our staff, and YHD can speak via a telephone conference call here in a week or so after we have had time to read through the information.

Thanks, James

From: John Martin <john@dtgrecycle.com>

Sent: Tuesday, March 1, 2022 10:52 AM

To: Rivard, James (ECY) <JRIV461@ECY.WA.GOV>; Shawn Magee <shawn.magee@co.yakima.wa.us> Cc: Ted Silvestri (YHD) <ted.silvestri@co.yakima.wa.us>; Brandon Comfort (YHD) <brandon.comfort@co.yakima.wa.us>; Grieves, Kimberly <ksar461@ECY.WA.GOV>; LeMond, Luke (ECY) <llem461@ECY.WA.GOV>; Rounds, Megan (ECY) <MROU461@ECY.WA.GOV>; Ian Sutton <isutton@parametrix.com>; Arnie Sugar <asugar@hwageo.com>; Dwight Miller <DMiller@parametrix.com>; Dan Guimont <dguimont@dtgrecycle.com>; Tom Vaughn <TVaughn@dtgrecycle.com> Subject: DTG Recycle - Yakima soil gas and ambient air sampling report - February 2022

THIS EMAIL ORIGINATED FROM OUTSIDE THE WASHINGTON STATE EMAIL SYSTEM - Take caution not to open attachments or links unless you know the sender AND were expecting the attachment or the link

James and Shawn,

Attached is the February 2022 Soil Gas and Ambient Air Sampling Report prepared by Freestone Environmental Services from the December 8, 2021, and January 21, 2022, sampling events at the LPL. As noted in the report, any concentration of contaminants identified at the odor location dissipates quickly. Concentrations in the ambient air are low, and points of compliance at the property boundary are particularly low.

As we have previously mentioned, we would like to begin applying final cover to further reduce odors. We are prepared to begin this and plan to start immediately.

On another note, Arnie at HWA and Scott Cave, who has been acting as the neighbors' representative, are collaborating closely, and so far we have mutually identified and agreed on up to twenty wells to measure. Measurements are tentatively scheduled for 3/11 - 3/16.

John

Maltby • Port of Tacoma • Redmond • Renton • Seattle • Tacoma Whidbey Island • Woodinville • Yakima

Pamela Herman

From:	Hasan Tahat
Sent:	Tuesday, December 14, 2021 3:28 PM
То:	'John Martin'
Cc:	Wade Porter; Ian Sutton; Alan Butler
Subject:	RE: DTG Recycle - Yakima field sampling and lab test report

Thank you John! After reviewing the report, if we have any question we will let you know. Best regards, Hasan

Hasan M. Tahat, Ph.D. Interim Executive Director Compliance, Engineering and Planning Division Supervisor Yakima Regional Clean Air Agency 186 Iron Horse Ct. Suite 101. Yakima, WA. 98901 Tel: (509) 834-2050 ext. 105 Fax: (509) 834-2060 E-mail: hasan@vrcaa.org

E-mail: <u>hasan@yrcaa.org</u>

The information contained in this email may be confidential and/or legally privileged. It has been sent for the sole use of the intended recipient(s). Any unauthorized review, use, disclosure, dissemination, distribution, or copying of this communication, or any of its contents, is strictly prohibited. Please note: This E-mail is considered a public document and may be subject to the Public Records Disclosure Act (RCW 42.56)

From: John Martin [mailto:john@dtgrecycle.com]
Sent: Tuesday, December 14, 2021 1:08 PM
To: Hasan Tahat
Cc: Wade Porter; Ian Sutton; Alan Butler
Subject: DTG Recycle - Yakima field sampling and lab test report

Hasan,

Please find attached the field sampling and lab test report for the silt sampling at the DTG Recycle – Yakima facility. Please let me know if you have any questions, and we can set up a call with Parametrix.

Thanks,

John

John Martin Associate General Counsel

Desk 425.523.8385 | Cell 425.408.2186 john@dtgrecycle.com P.O. Box 14203 Mill Creek, WA 98082

www.dtgrecycle.com www.bigbluebag.com

Maltby • Port of Tacoma • Redmond • Renton • Seattle • Tacoma • Woodinville • Yakima

Pamela Herman

From:	Rivard, James (ECY) <jriv461@ecy.wa.gov></jriv461@ecy.wa.gov>
Sent:	Wednesday, March 9, 2022 9:51 AM
То:	Hasan Tahat; Ted Silvestri (YHD); Shawn Magee; Brandon Comfort; Grieves, Kimberly;
	LeMond, Luke (ECY); Rounds, Megan (ECY); Wade Porter
Subject:	RE: DTG Recycle - Yakima soil gas and ambient air sampling report - February 2022

Ok I got someone to set up a doodle poll for me. Let's see if we can get together to discuss emissions @ DTG.

If you can fill out the Doodle Poll that will help us schedule a meeting. Thanks.

https://doodle.com/meeting/participate/id/Le3vyjOd

From: Rivard, James (ECY)
Sent: Monday, March 7, 2022 4:40 PM
To: 'Hasan Tahat' <hasan@yrcaa.org>; Ted Silvestri (YHD) <ted.silvestri@co.yakima.wa.us>; Shawn Magee
<shawn.magee@co.yakima.wa.us>; Brandon Comfort <brandon.comfort@co.yakima.wa.us>; Grieves, Kimberly
<ksar461@ECY.WA.GOV>; LeMond, Luke (ECY) <llem461@ECY.WA.GOV>; Rounds, Megan (ECY)
<MROU461@ECY.WA.GOV>
Cc: Wade Porter <wade@yrcaa.org>
Subject: RE: DTG Recycle - Yakima soil gas and ambient air sampling report - February 2022

Thanks Hasan,

Kimberly/Megan/Luke can you forward YRCAA any previous methane readings by the neighbor group and DTG, having YRCAA look at those might be helpful as well.

At the moment I'm having problems with the Doodle Poll website, if someone else can set up a poll and send out a link that would be good. If not I'll try again tomorrow.

Thanks,

From: Hasan Tahat <<u>hasan@yrcaa.org</u>>
Sent: Tuesday, March 1, 2022 4:01 PM
To: Rivard, James (ECY) <<u>JRIV461@ECY.WA.GOV</u>>
Cc: Wade Porter <<u>wade@yrcaa.org</u>>
Subject: RE: DTG Recycle - Yakima soil gas and ambient air sampling report - February 2022

THIS EMAIL ORIGINATED FROM OUTSIDE THE WASHINGTON STATE EMAIL SYSTEM - Take caution not to open attachments or links unless you know the sender AND were expecting the attachment or the link

Hi James,

Yes sure. We really need to talk. Just looking at the report without reading, I can say interesting! Let me read it please and let us talk. Thank you for sharing. Best regards, Hasan

Hasan M. Tahat, Ph.D.

Interim Executive Director Compliance, Engineering and Planning Division Supervisor Yakima Regional Clean Air Agency 186 Iron Horse Ct. Suite 101. Yakima, WA. 98901 Tel: (509) 834-2050 ext. 105 Fax: (509) 834-2060 E-mail: <u>hasan@yrcaa.org</u>

The information contained in this email may be confidential and/or legally privileged. It has been sent for the sole use of the intended recipient(s). Any unauthorized review, use, disclosure, dissemination, distribution, or copying of this communication, or any of its contents, is strictly prohibited. Please note: This E-mail is considered a public document and may be subject to the Public Records Disclosure Act (RCW 42.56)

From: Rivard, James (ECY) [mailto:JRIV461@ECY.WA.GOV]
Sent: Tuesday, March 1, 2022 3:28 PM
To: Hasan Tahat
Cc: Park, Sage (ECY); Davies, Laurie (ECY); Ted Silvestri (YHD); Shawn Magee
Subject: FW: DTG Recycle - Yakima soil gas and ambient air sampling report - February 2022

Hello Hasan,

We received the attached today.

Our engineering and technical staff will be reviewing. But, we\$B!G(Jd appreciate any review / advisement by YRCAA as the regional clean air agency as well. A couple of things jump out right away and raise questions. 1) Temperature readings of 149 F just below the surface and 2) VOCs.

Perhaps your staff, our staff, and YHD can speak via a telephone conference call here in a week or so after we have had time to read through the information.

Thanks, James

From: John Martin <john@dtgrecycle.com>

Sent: Tuesday, March 1, 2022 10:52 AM

To: Rivard, James (ECY) <<u>JRIV461@ECY.WA.GOV</u>>; Shawn Magee <<u>shawn.magee@co.yakima.wa.us</u>> Cc: Ted Silvestri (YHD) <<u>ted.silvestri@co.yakima.wa.us</u>>; Brandon Comfort (YHD) <<u>brandon.comfort@co.yakima.wa.us</u>>; Grieves, Kimberly <<u>ksar461@ECY.WA.GOV</u>>; LeMond, Luke (ECY) <<u>llem461@ECY.WA.GOV</u>>; Rounds, Megan (ECY) <<u>MROU461@ECY.WA.GOV</u>>; Ian Sutton <<u>isutton@parametrix.com</u>>; Arnie Sugar <<u>asugar@hwageo.com</u>>; Dwight Miller <<u>DMiller@parametrix.com</u>>; Dan Guimont <<u>dguimont@dtgrecycle.com</u>>; Tom Vaughn <<u>TVaughn@dtgrecycle.com</u>> Subject: DTG Recycle - Yakima soil gas and ambient air sampling report - February 2022

THIS EMAIL ORIGINATED FROM OUTSIDE THE WASHINGTON STATE EMAIL SYSTEM - Take caution not to open attachments or links unless you know the sender AND were expecting the attachment or the link

James and Shawn,

Attached is the February 2022 Soil Gas and Ambient Air Sampling Report prepared by Freestone Environmental Services from the December 8, 2021, and January 21, 2022, sampling events at the LPL. As noted in the report, any concentration of contaminants identified at the odor location dissipates quickly. Concentrations in the ambient air are low, and points of compliance at the property boundary are particularly low.

As we have previously mentioned, we would like to begin applying final cover to further reduce odors. We are prepared to begin this and plan to start immediately.

On another note, Arnie at HWA and Scott Cave, who has been acting as the neighborsB!G(J representative, are collaborating closely, and so far we have mutually identified and agreed on up to twenty wells to measure. Measurements are tentatively scheduled for <math>3/11 - 3/16.

Thank you,

John

John Martin Associate General Counsel

Desk 425.523.8385 | Cell 425.408.2186 john@dtgrecycle.com P.O. Box 14203 Mill Creek, WA 98082

Maltby \$B!|(J Port of Tacoma \$B!|(J Redmond \$B!|(J Renton \$B!|(J Seattle \$B!|(J Tacoma Whidbey Island \$B!|(J Woodinville \$B!|(J Yakima

(f) (in) (o)

Pamela Herman

From:	Scott Cave <sccomm@sosmail.us></sccomm@sosmail.us>
Sent:	Monday, January 18, 2021 10:24 PM
То:	Rivard, James (ECY); Grieves, Kimberly; 'Ted Silvestri';
	brandon.comfort@co.yakima.wa.us; Shanley, Patricia (ECY); Harris, William (ECY); Miller,
	Coleman (ECY); Matthews, David C. (ECY)
Subject:	RE: Landfill Emissions Detection Discussion
Attachments:	Pergam DTG Yakima LPL Perimeter Methane Field Inspection Report Aug 2020.pdf;
	Pergam LMC Gas Inspection Report for CCC Nov 2020.pdf

THIS EMAIL ORIGINATED FROM OUTSIDE THE WASHINGTON STATE EMAIL SYSTEM - Take caution not to open attachments or links unless you know the sender AND were expecting the attachment or the link

James and all

For the ZOOM meeting, attached for your review are the two methane surveys conducted in 2020 by Pergam of DTG's LPL.

Scott

----Original Appointment----From: Rivard, James (ECY)
Sent: Tuesday, January 12, 2021 1:15 PM
To: Grieves, Kimberly; Ted Silvestri; <u>brandon.comfort@co.yakima.wa.us</u>; Scott A Cave; Shanley, Patricia (ECY); Harris, William (ECY); Miller, Coleman (ECY); Matthews, David C. (ECY)
Subject: Landfill Emissions Detection Discussion
When: Tuesday, January 19, 2021 1:00 PM-2:00 PM (UTC-08:00) Pacific Time (US & Canada).
Where: Skype Meeting

Here is a date and time that looks like it might work for most to have a discussion about landfill emissions detection, which stems from our November discussion.

Join Skype Meeting

Trouble Joining? Try Skype Web App

<u>Help</u>

Memorandum

8019 West Quinault Avenue, Suite 201, Kennewick, Washington 99336

www.geoengineers.com

To:	James Carmody, Meyer, Fluegge and Tenney, PS; Scott Cave, SC Communications
From:	Kevin Lindsey, LHG
Date:	April 6, 2022
File:	24904-001-00
Subject:	DTG/Anderson Pit Limited Purpose Landfill Review Comments on the HWA GeoSciences, Inc. Letter Report, dated March 25, 2022

INTRODUCTION

GeoEngineers, Inc. was asked to review and comment on the HWA Geosciences, Inc. letter report, Groundwater Gradient Study DTG/Anderson Pit Limited Purpose Landfill, Yakima, Washington dated March 25, 2022. The letter report described water level measurements collected by HWA GeoSciences, Inc. (HWA) in early March 2022 from two monitoring wells at the DTG Landfill Site and from 18 private residential and orchard water wells in the surrounding area (primarily north and northeast of the DTG Landfill Site), presented two potentiometric maps compiled from this data, and provided some explanation for the data reported in the letter report.

The objective of this memorandum from GeoEngineers is to provide you with comments we have pertaining to that letter report. Our comments center on methodology used to collect the water level data, the occurrence of water in Well MW-2, irrigation pumping effects, and groundwater gradient and flow direction.

METHODOLOGY

The HWA letter report notes that water level data was collected using an acoustic well sounder, and it rightly points out the challenges associated with using that type of instrument. Of note, with respect to those challenges, is the potential for multiple reflections and the need for the operator to select the most reasonable one for use in determining depth to water in the well. The potential variability related to multiple reflectors is not delineated or described in the water level data presented in the letter report. We request that the operator's fieldnotes and any subsequent data analysis notes, including any QA/QC review notes, be provided for our evaluation and review.

WATER ENCOUNTERED IN WELL MW-2

As we had commented in previous correspondence with you we had found reference to water being encountered in Well MW-2 much shallower than the depth at which the well was constructed to monitor. This shallower water-bearing zone was sealed off from and is not monitored by the well. Subsequent monitoring reports do not reference the occurrence of this shallower water. However, the HWA letter, in the Results section on page 2, now acknowledges the presence of this water while at the same time offering an explanation for why MW-2 was not constructed to monitor that interval. We find that explanation to be problematic.

The letter states that the shallower water-bearing interval was only marginally water bearing, and that it is unknown if it would yield enough water from which to collect samples. With respect to these claims:

- The Implementation Guidance for the Ground Water Quality Standards (Ecology Publication #96-02, revised 2005) states that, "All groundwater is classified as a potential source of drinking water for the purposes of this guidance. It is not necessary for groundwater to be defined as an 'aquifer' (groundwater which produces significant yield) for it to be protected. Likewise, the standards do not distinguish groundwater, which is perched, seasonal or artificial." The guidance document also notes that Chapter 90.48 Revised Code of Washington mandates that all groundwater be protected.
- Publication #96-02 further states that monitoring wells should be designed to sample the uppermost zone potentially affected by the activity plus any other aquifer where contaminants may impact groundwater quality.
- The publication also states that the well needs to be completed within the "zone of interest."

There does not appear to be a provision in the guidance that cites applicable WAC or RCW's that stipulates that a marginally productive water-bearing zone can be ignored for the purpose of groundwater monitoring. However, the WAC guidance does allow for Ecology to approve of different monitoring targets on a case-by-case basis.

With respect to the ability of the zone hosting first, or shallowest, groundwater in Well MW-2 to yield enough water to be sampled, what is the origin of that statement? The well logs for MW-2 and MW-3 refer to the upper zone in question producing 2 to 3 gpm in MW-2 and 5 gpm in MW-3. In other words, the production rates are similar for the zone that was deemed to be low producing and sealed off in MW-2 and the zone in which MW-3 is open to.

Additional correspondence or justification explaining why first groundwater at the MW-2 location does not need to be monitored appears to be warranted. This seems especially important because of the significantly different water levels and water quality results reported in Wells MW-2 and MW-3 that we had previously described to you.

IRRIGATION PUMPING EFFECTS

The HWA letter (HWA 2022) does offer an explanation for the water level differences and attempts to show that the gradient is steep to the north and whether MW-2 is included in the interpretation of overall monitoring program or not. The letter attributes depressed water levels in MW-2 to reflect, at least in part, irrigation pumping in the nearby Herke well. We disagree with this interpretation for the following reasons:

- Multiple quarterly water level data collected from Well MW-2 over the span of many years does not show irrigation season (summer) declines followed by off-season (winter) rebound. Irrigation season water level decline followed by off-season rebound is ubiquitous across the basalt aquifers of the Columbia Basin. The absence of a hydraulic signal in MW-2 that would be expected in a seasonal irrigation setting needs further explanation.
- The water level reported in the HWA letter for MW-2 is lower than the level reported in the Herke well. Typically, one would expect the opposite relationship, water level in the pumped/pumping well will be

Memorandum to Meyer, Fluegge and Tenney, PS and CS Communications April 6, 2022 Page 3

lower in the distal, or observation well. Again, to imply otherwise requires further explanation and data.

As we have hypothesized in our earlier correspondence, we interpret the deeper water level and cation/anion chemistry in MW-2 relative to MW-3 to indicate that they are in two different water-bearing zones with limited hydraulic continuity between the two. The water levels reported in the 2022 HWA letter do not change our current hypothesis and interpretation (GeoEngineers 2021a, b).

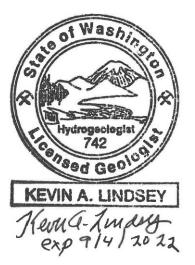
GRADIENT AND FLOW DIRECTION

We had previously described to you our concerns about groundwater gradient and flow direction interpretations. The data in the letter has not alleviated those for the following reasons:

- **First**, as noted in the previous section we think the preponderance of data still shows that MW-2 is monitoring a deeper water-bearing interval than MW-3. Nothing presented in the HWA 2022 letter alters that conclusion. In fact, the data seems to continue to support our previous hypothesis.
- Second, the proposed monitoring well location provided on Figures 1 and 2 of the HWA 2022 letter lies very close to a very nearly straight line between MW-2 and MW-3. A straight line of wells does not provide an optimal solution for defining the planar surface from which groundwater flow direction and gradient can be interpreted.
- Third, no information as to the water-bearing zone targeted in a new well is provided. Would this well target first water regardless of production characteristics or only first water that is deemed to be productive enough? In either case justification for potentially not monitoring the first water-bearing zone encountered during drilling is warranted.
- Finally, the origin and characteristics of the shallowest groundwater in the vicinity of the Site warrant further investigation. As we have noted in earlier work, the presence of nitrate concentrations above 3 mg/L in MW-3 is suggestive of surface sources. The contention that there is no upgradient groundwater at the DTG Site necessitates, therefore, that the elevated nitrate in MW-3 comes from the Site. Given the shape of the potentiometric surface contours shown in Figures 1 and 2 in the HWA letter, the slope of the ridge not only to the north but also to the east, suggests that additional well monitoring to the east and potentially southeast should be considered.

CONCLUSION

GeoEngineers appreciates the effort to coordinate and collect water levels to the north of the landfill over a period of two days; however, some concerns and questions remain after reviewing the letter from HWA. They are as follows:


- The data presented is based on instrumentation "limited in its accuracy." We acknowledge the necessity and limitations of the acoustic sounder, but we request that any fieldnotes and additional methods so that the variability and confidence in the data and maps provided can be assessed.
- Water level data for MW-2 still suggests that it is in a different water-bearing interval than MW-3. Our hypothesis with respect to that has not changed. In addition:

- The justification offered in the letter for not monitoring first water at MW-2 seems to ignore Ecology guidance.
- The explanation offered for the lower water levels in MW-2 resulting from irrigation pumping at Herke well is not corroborated by MW-2 water level data which lacks evidence of seasonal fluctuation attributable to irrigation pumping season and ignores the fact that water level in the Herke well (hypothesized to be the pumping well) is higher than in MW-2 (a non-pumping well).
- The HWA letter also does not offer a reason for the differing water quality observed in MW-2 versus MW-3, another line of evidence we based our initial hypothesis on.
- Additional justification for the conclusions reached in the HWA letter seem warranted.
- With respect to groundwater flow direction and gradient:
 - Justification for placing the proposed new monitoring well location in a line between MW-2 and MW-3 is not provided.
 - In addition, there is no discussion as to the target depth of the proposed monitoring well.
 - Consistent with previous interpretations offered for the DTG site, the potentiometric surface maps (Figures 1 and 2 in the letter) do not show upgradient water entering the area and they show what groundwater is moving downslope to the north. In the absence of upgradient groundwater this leads to the question of what is happening with groundwater to the east and southeast, which is also down slope.
 - Additional justification for new monitoring well placement is warranted.

Based on the information presented in the letter and absence of supporting documents we stand by the interpretations and findings we have previously presented.

LIMITATIONS

The conclusions, recommendations, and opinions presented in this report are based on our professional knowledge, judgment and experience. GeoEngineers reserves the right to change the opinions expressed herein if, at a future time, new or additional information is presented to us.

Soil Gas and Ambient Air Sampling Report

Summary of December 8, 2021 & January 21, 2022 Sampling Events

SUBMITTED TO:

DTG Recycling Group

41 Rocky Top Road, Yakima, WA, 98908

SUBMITTED BY:

1100 Jadwin Avenue, Ste. 250, Richland, WA, 99352

February 25, 2022

INTRODUCTION

This report summarizes field activities and analytical results associated with soil gas sampling conducted December 8, 2021 and follow-up ambient air sampling conducted January 21, 2022, at the DTG Recycling Group landfill, located at 41 Rocky Top Road, in Yakima, Washington. Sampling activities were conducted by Freestone Environmental Services (Freestone). Freestone's field activity reports are included in Appendix A.

Soil gas and ambient air sampling were performed to supplement recent investigations made by DTG Staff and Department of Health representatives. The northeastern toe and western slope of the landfill (where sloughing of the landfill face has opened stress fractures in the upper soil horizon) indicates a possible source of fugitive odors emanating from the landfill operations. The occurrence of the odors, which are described as typical landfill odors, is variable and most noticeable in stable to stagnant atmospheric conditions. The intensity of the odors is greatest in areas where fractures in the earth are visibly venting or in once open-fractured areas that have then been purposely covered. DTG has initiated efforts to fill/cap the fractures to mitigate the release of odor-causing gases. Initial soil gas sampling was conducted on December 8, 2021, to characterize the odor-causing gasses. Based on the initial sampling results, DTG requested additional ambient air sampling at the landfill boundary, near surface fractures, and at specified intervals from a surface fracture. This ambient air sampling was conducted on January 21, 2022. Analytical results for both sampling events are summarized in this report.

DECEMBER 2021 FIELD SAMPLING ACTIVITIES

Freestone and DTG Staff measured surface temperature readings using an infrared temperature gauge and marked three sample locations with field marker flags near the supposed source of the odors during routine quarterly methane monitoring on December 3, 2021. The three proposed sample locations are in different locations than the routine quarterly methane monitoring. Surface and subsurface temperatures were recorded on December 8, 2021, at each sampling location using an infrared temperature gauge and digital thermometer, respectively. These measurements are provided in Table 1.

Soil gas samples were collected from the three previously marked locations on December 8, 2021. The weather conditions were partly cloudy, windy, and 46°F at the time of sampling. All soil gas samples were collected using a hand-pump

DTG Recycling Group

attached to a vacuum air sample box equipped with a 1.0-liter (L) Tedlar bag. Prior to sample collection, a minimum of 2 liters were evacuated from the tubing to ensure a representative sample. For the sample collection, the soil gas was drawn into the Tedlar bag, which was filled to the consistency of a 'soft pillow'. Two (2) samples were collected at each sampling location. The second sample was a backup sample in the event of a leak from the first sample. Only one (1) soil gas sample was tested by the laboratory from each location. Field activity photos are included in Appendix A.

After soil gas sample collection, each Tedlar bag was labeled with a sample identification number (Ex. A-1). The bags were placed in a cooler. Sample information and requested analyses were recorded on a signed chain of custody form and placed into the shipping container (the chain of custody can be found in Appendix B and C). The samples were shipped next day early air via UPS to Atmospheric Analysis & Consulting, Inc. located in Ventura, California.

The three sample locations are depicted in Figure 1 below. Samples A-1 and A-2 were collected on the upper slope of the upper road on the landfill surface. Sample A-3 was collected on the upper slope of the lower road on the landfill, below where samples A-1 and A-2 were taken.

For sample locations A-1 and A-2, there were visible vapors being released from fractures in the surface. Such fractures extended roughly 8 inches below the slope surface and were about two inches in width. Given such exposure, the ¼-inch Teflon tubing was inserted directly into the crevice of sample locations A-1 and A-2 until refusal was met. An infrared temperature gauge was aimed down each fracture to measure the surface temperature in addition to a 12-inch digital thermometer to measure the subsurface.

Sample A-3 was collected on the upper slope of the lower road with no fracture present. For this sample, a soil probe was utilized to insert the Teflon tubing approximately 8 inches below ground surface (bgs). The annulus around the tubing was sealed using granular bentonite to mitigate infiltration and sampling of surface ambient air (i.e., short circuiting).

Tuble 1. Bullace and Subsulface temperatures at each sumple location								
Sample	SubsurfaceSurfaceDigital Thermometer (°F)Infrared Gauge							
A-1	145	149						
A-2	62	61						
A-3	57.4	57						

Table 1. Surface and subsurface temperatures at each sample location

DTG Recycling Group

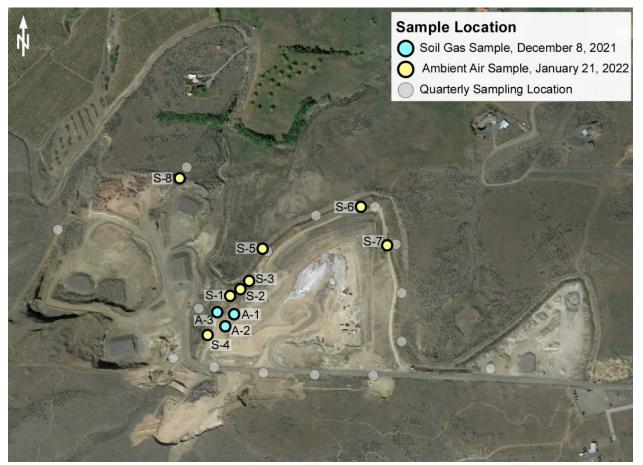


Figure 1. Soil gas sample, air sample, and quarterly methane monitoring locations at DTG Recycle

ANALYTICAL RESULTS FOR DECEMBER 2021 SAMPLING

Samples A-1, A-2, and A-3 were analyzed on December 9th for speciated sulfur compounds and December 13, 2021 for Volatile Organic Compounds (VOCs). The laboratory analytical packages for the December sampling event are included in Appendix B and C.

The soil gas samples were tested for VOCs (Table 2) and tentatively identified compounds (TICs; Table 3) using EPA Method TO-15 and for speciated sulfur compounds (Table 4) using method ASTM D5504. Tables 2 through 4 provide analytical results for detected analytes during the December 2021 soil gas sampling.

DTG Recycling Group

Soil Gas Sample Concentrations							
Analyte							
	A-1	A-2	A-3				
1,2,4-Trimethylbenzene	2,010	754	176				
1,3,5-Trimethylbenzene	2,120	696	158				
1,4-Dioxane	5,570	1,620	438				
2-Butanone (MEK)	14,400	2,390	U				
2-Hexanone (MBK)	474	U	U				
2-Propanol (IPA)	39,900	4,120	556				
4-Ethyltoluene	1,830	606	130				
4-Methyl-2-pentanone (MiBK)	380	U	U				
Acetone	44,600	4,850	U				
Benzene	116,000	25,300	1,470				
Carbon Disulfide	U	586	424				
Chlorobenzene	218	U	U				
Chloroethane	1,110	316	U				
Chloromethane	76,700	4,090	U				
Cyclohexane	992	434	U				
Ethanol	4,570	982	U				
Ethylbenzene	13,600	9,400	2,040				
Heptane	12,500	5,240	194				
Hexane	19,500	8,470	150				
m & p-Xylene	9,410	3,050	528				
Methanol	125,000	11,900	1,290				
o-Xylene	6,090	2,130	388				
Propene	149,000	25,100	U				
Styrene	2,320	510	114				
Tetrahydrofuran	18,300	3,100	216				
Toluene	17,900	11,800	1,540				

Table 2. VOC Concentrations (ppbv)

U = Analyte not detected above the Sample Reporting Limit

DTG Recycling Group

Table 3. Tentatively Identified Compound Concentrations (ppbv)

	Soil Gas Sample Concentrations						
Analyte	A-1	A-2	A-3				
Isobutane	4770						
2-Methyl-1-propene	12700	5660					
Butane	8790	4320					
2-Butene	5090	2140					
Pentane	12300	6220					
2-Methyl-2-butene	8760						
2-Methylpentane	6940	3120					
3-Methylfuran	14400						
2-Methylfuran		4980					
Octane	4300						
4,4,5-Trimethyl-2-hexane	4320						
3-Methylcyclopentene		3370					
Methylcyclopentane		2410					
5-Methyl-1,3-		2500					
cyclopentadiene		2500					
3-Methyl-1,3-pentadiene		16600					
Decane			268				
2-Ethyl-1-hexanol			322				
2,4-Dimethyl-2-decene			212				
4-Undecene			228				
Undecane			518				
1-Ethyly-4-ethylbenzene			222				
2,3-Dihydro-4-methyl-1H-			228				
indene			220				
Dodecane			378				
2,4-diethyl-1-			222				
methylbenzene			222				

"--" = Not identified for this sample

DTG Recycling Group

Table 4. Speciated Sulfur Concentrations (ppmv)								
Amelyte	Soil Gas Sample Concentrations							
Analyte	A-1	A-2	A-3					
Hydrogen Sulfide	12.4	0.49	U					
COS/SO2	0.472	0.055	0.137					
Methyl Mercaptan	11.9	1.75	U					
Ethyl Mercaptan	0.091		U					
Dimethyl Sulfide	18.3	6.34	U					
Carbon Disulfide	0.141	U	U					
sec-Butyl Mercaptan /	1.00	0.220						
Thiophene	1.08	0.329	U					
Dimethyl Disulfide	0.386	0.319	U					
2-Methylthiophene	0.606	0.211	U					
3-Methylthiophene	0.355	0.112	U					
Tetrahydrothiophene	0.406	0.109	U					
Total Unidentified Sulfur	1.54	0.435	U					
Total Reduced Sulfurs	47.2	10.1	U					

Table 4. Speciated Sulfur Concentrations (pp	omv)
--	------

U = Analyte not detected above the Sample Reporting Limit

JANUARY 2022 FIELD SAMPLING ACTIVITIES

Based on results from the December 2021 field sampling, DTG requested further interrogation of the ambient air concentrations at locations near existing fractures and at multiple locations along the landfill boundary. Summa cannisters equipped with a regulator were used for sampling to allow for the collection of the air sample over a 2-hr time interval to account for variable ambient conditions (i.e., wind, barometric pressures, temperature, source fluctuations). This time interval approach is a better assessment of variable ambient outdoor conditions compared to an instantaneous sample. Additionally, summa cannisters were chosen over Tedlar bags to allow for a greater sample hold time, more accurate ppby-level analysis, and the cannisters ability to capture samples in the relative breathing zone of workers. On January 21, 2022, Freestone and DTG staff walked down the proposed boundary sample locations and the landfill surface sample locations. It was anticipated that surface fractures similar to the December sampling would be evident in January, however, ongoing landfill cover activities resulted in no actively venting fractures at the landfill surface. A non-venting fracture was identified at location S-1 and ambient air samples were collected from the immediate area surrounding the fracture. As depicted in Figure 1, four (4) samples were collected from the landfill boundary. Three (3) surface samples were collected

DTG Recycling Group

from the vicinity of a fracture at intervals: within 1 ft, 5 ft, and 15 ft from the fracture, and one (1) upwind sample was collected for background comparison.

After sample collection the summa cannisters were packaged for shipping. Sample information and requested analyses were recorded on a signed chain of custody form (Appendix D) and placed into the shipping container. The samples were shipped ground via UPS to Atmospheric Analysis & Consulting, Inc. located in Ventura, California.

The weather conditions were partly cloudy and 37°F at the time of sampling. Wind conditions were variable between 0-3 mph and from a south-westerly direction. Prior to sample collection, all summa cannisters were placed in the sampling locations and positioned approximately 3-ft above ground surface. Surface temperatures were recorded at each sampling location using an infrared temperature gauge. For the sample collection, the flow regulator on the summa cannister was opened and time-on was recorded. The summa cannisters were monitored during the sampling period and the intake valve was closed leaving some vacuum pressure in the canister per the laboratory protocol. Sampling information is summarized in Table 5.

Sample	Sample Location	Surface Temperature at Sample Location (°F)	Time On	Time Off
S-1	Fracture	54	1249	1456
S-2	5-ft downwind	44	1250	1443
S-3	15-ft downwind	49	1250	1445
S-4	Upwind	34	1246	1440
S-5	Boundary	31	1300	1455
S-6	Boundary	44	1257	1446
S-7	Boundary	31	1253	1448
S-8	Boundary	45	1233	1415

Table 5. Ambient Air Sample Collection Information

ANALYTICAL RESULTS FOR JANUARY 2022 SAMPLING

Samples S-1, S-2, S-3, S-4, S-5, S-6, S-7, and S-8 were analyzed for VOCs and TICs using EPA Method TO-15 on January 27, 2022. Speciated sulfur compounds were not analyzed for this sampling event given that the primary objective was to identify the ambient distribution of the higher-risk organic compounds measured during the December 2021 sampling event. The laboratory analytical packages for the January sampling event are included in Appendix D. Tables 6 through 8 provide analytical results for detected analytes identified using EPA Method TO-15. Table 6 provides the VOC analytical results in ppbv and Table 7 provides a conversion to µg/m³ so that the results can be compared to Model Toxics Control Act (MTCA) Method B and C cleanup levels. MTCA Method B and C cleanup levels are provided for reference only. MTCA regulations apply to the cleanup and prevention of contaminated sites and therefore may not be applicable for decision making at this location. The TIC compounds provided in Table 8, are for information only since they were provided in the laboratory analytical report.

DTG Recycling Group

	Ambient Air Sample Concentrations								
Analyte	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	
1,2,4- Trimethylbenzene	U	U	U	U	U	U	U	U	
1,3,5- Trimethylbenzene	U	U	U	U	U	U	U	U	
1,4-Dioxane	U	U	U	U	U	U	U	U	
2-Butanone (MEK)	U	U	1.95	U	U	U	U	U	
2-Hexanone (MBK)	U	U	U	U	U	U	U	U	
2-Propanol (IPA)	U	U	U	U	U	U	U	U	
4-Ethyltoluene	U	U	U	U	U	U	U	U	
4-Methyl-2- pentanone (MiBK)	U	U	U	U	U	U	U	U	
Acetone	3.64	3.76	10.9	U	U	3.57	U	U	
Benzene	13.3	13.0	26.8	U	U	U	U	U	
Carbon Disulfide	U	U	U	U	U	U	U	U	
Chlorobenzene	U	U	U	U	U	U	U	U	
Chloroethane	U	U	U	U	U	U	U	U	
Chloromethane	12.7	10.1	17.7	U	U	U	U	U	
Cyclohexane	U	U	U	U	U	U	U	U	
Ethanol	U	U	7.46	U	U	U	U	U	
Ethyl Acetate	U	U	2.69	U	U	U	U	U	
Ethylbenzene	1.85	1.99	5.82	U	U	U	U	U	
Heptane	1.16	U	3.05	U	U	U	U	U	
Hexane	1.96	1.84	4.02	U	U	U	U	U	
m & p-Xylene	U	U	1.91	U	U	U	U	U	
Methanol	U	U	28.8	U	U	U	9.46	U	
o-Xylene	U	U	U	U	U	U	U	U	
Propene	23.6	18.0	35.6	U	U	U	U	U	
Styrene	U	U	U	U	U	U	U	U	
Tetrahydrofuran	U	U	U	U	U	U	U	U	
Toluene	4.49	3.98	23.8	U	U	U	U	U	

Table 6. VOC Concentrations (ppbv)

U = Analyte not detected above the Sample Reporting Limit

DTG Recycling Group

Table 7. VOC Concentrations Compared to MTCA Cleanup Levels (µg/m³)

		Ambient Air Sample Concentrations							MTCA CULs*	
Analyte	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	Method B Noncancer	Method C Noncancer
1,2,4-Trimethylbenzene	U	U	U	U	U	U	U	U	27	60
1,3,5-Trimethylbenzene	U	U	U	U	U	U	U	U	27	60
1,4-Dioxane	U	U	U	U	U	U	U	U	14	30
2-Butanone (MEK)	U	U	5.7	U	U	U	U	U	2,300	5,000
2-Hexanone (MBK)	U	U	U	U	U	U	U	U	NA	NA
2-Propanol (IPA)	U	U	U	U	U	U	U	U	91	200
4-Ethyltoluene	U	U	U	U	U	U	U	U	NA	NA
4-Methyl-2-pentanone (MiBK)	U	U	U	U	U	U	U	U	1,400	3,000
Acetone	8.6	8.9	25.9	U	U	8.5	U	U	14,000	31,000
Benzene	42.5	41.5	85.6	U	U	U	U	U	14	30
Carbon Disulfide	U	U	U	U	U	U	U	U	320	700
Chlorobenzene	U	U	U	U	U	U	U	U	23	50
Chloroethane	U	U	U	U	U	U	U	U	NA	NA
Chloromethane	26.2	20.9	36.6	U	U	U	U	U	41	90
Cyclohexane	U	U	U	U	U	U	U	U	2,700	6,000
Ethanol	U	U	14.1	U	U	U	U	U	NA	NA
Ethylbenzene	8.0	8.6	25.3	U	U	U	U	U	460	1,000
Heptane	4.8	U	12.5	U	U	U	U	U	180	400
Hexane	6.9	6.5	14.2	U	U	U	U	U	320	700
m & p-Xylene	U	U	U	U	U	U	U	U	46	100
Methanol	U	U	37.7	U	U	U	12.4	U	9,100	20,000
o-Xylene	U	U	U	U	U	U	U	U	46	100
Propene	40.6	31.0	61.3	U	U	U	U	U	NA	NA
Styrene	U	U	U	U	U	U	U	U	460	1,000
Tetrahydrofuran	U	U	U	U	U	U	U	U	910	2,000
Toluene	16.9	15.0	89.7	U	U	U	U	U	2,300	5,000

*MTCA CULs derived from Cleanup Levels and Risk Calculations (CLARC) tables

NA = Analyte does not have a cleanup level in the CLARC tables

U = Analyte not detected above the Sample Reporting Limit

DTG Recycling Group

Table 8. Tentatively Identified Compound Concentrations (ppbv)

					ple Conce		S	
Analyte	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8
Isobutane								
2-Methyl-1-propene	4.86	4.88	7.37					
2-Methylbutane					4.37			
Butane	3.54	3.86	6.81					
2-Butene								
Pentane		3.96	9.07					
2-Methyl-2-butene	4.65	1.89	3.12					
2-Methylpentane								
3-Methylfuran								
2-Methylfuran			2.51					
Octane			1.73					
Hexamethylcyclotrisiloxane			5.04					
2,2,6-Trimethyloctane			4.07					
4,4,5-Trimethyl-2-hexane								
3-Methylcyclopentene								
Methylcyclopentane								
5-Methyl-1,3-cyclopentadiene								
3-Methyl-1,3-pentadiene								
Decane			1.70					
1-Methyl-4-(1-methylethyl)-benzene			8.02					
2-Ethyl-1-hexanol								
2,4-Dimethyl-2-decene								
4-Undecene								
Undecane								
1-Ethyly-4-ethylbenzene								
2,3-Dihydro-4-methyl-1H-indene								
Dodecane								
2,4-diethyl-1-methylbenzene								
Propane						1.74		

"--" = Not identified for this sample

OBSERVATIONS

The following observations are made based on the sampling results:

- Soil gas concentrations from samples collected December 2021, were highest (as expected) at the actively venting fracture locations A-1 and A-2. Elevated concentrations, particularly of VOC compounds correlated with heavy odors during the sample collection event.
- Soil gas concentrations were significantly lower at the A-3 location where venting was not occurring.
- The detected VOC compounds were similar at all three soil gas sampling locations A-1, A-2, and A-3 suggesting similar sources.
- Compared to the December 2021 analytical results, January 2022 were significantly lower or not detected, even in the three samples collected from the shallow fracture (samples S-1, S-2, and S-3). This was expected given that the January 2022 samples were collected from the ambient air and therefore subject to greater natural diffusion and dilution.
- VOC concentrations from the landfill boundary sample locations are largely non-detect except for occasional detections of acetone and methanol which are common laboratory contaminants.
- Because of the uncertainty of the identification of the TICs, the interpretation of the results and their meaning to this project is difficult.
- The detected analytes evident at the landfill surface locations in December 2021 and January 2022 are associated with a variety of sources including plastics, fuels, solvents, lubricants, and other decaying organic compounds. The benzene, toluene, ethylbenzene, and xylene (BTEX) compounds are typically associated with gasoline and diesel-range organics (i.e., fuels).
- The nature and concentration of detected analytes warrant increased consideration of PPE and IH monitoring while working proximate to the actively vented fracture locations. Ambient concentrations appear to dissipate quickly along the working surface of the landfill and particularly at the further reaches of the landfill boundary.

APPENDIX A

FIELD SUMMARY REPORTS AND PHOTOS

	REESTONE	1100 Ja	mental Services, Inc adwin Ave, Suite 250 I, Washington 99352 509-943-5222
	Fi	eld Report	
Date: 12	1812021	Client: DTG Recycle	
Location: T	TG Lordfill	Project: DTG	
Field Person	nel: Tracu & Brocke	Weather: Party Claudy Windy T	emperature: 46° F
Time (24 Hours):	Activities:	5 5 1	
1000	PLEAT WITH DIG, 4-ans merer (Check in at office a GasiAlerTMax XTI	Didore 2151
1020	Find OUT UPS S	NOD OF TIME For SC	mple 14
1900	Locate semple	On: 20.9% OT S	sample
1220	Lacation Se	ing equipment	
1342	Collecting sample Surface FemD=1	A-1 backup 49°F aimed day	A-
1336	Ground Temp=1	45°F N/ probe A-2 from aver	TI
1358	Collecting Sample	A-2 backup	A-2
1354	Ground Temp=	A-3 from hillside	
1420	Collect sample ! Surface Temp=	7-3 backup 57 °F	A-3
1417	Ground Temp=	FICE + head TO UP	STO
1515	Ship samples Ship samples vi Hond back to In	a UPS Next day a	his early.
	W.	of Used milli	8/2021
Signature	Al MARIAN		ate: 12 8 202
Reviewed B	Sent provinge		ate:

	REESTONE	1100 Jadwin Ave, Suite 2 Richland, Washington 993
		509-943-52
Pag	Field Report	
Date:))		ecucle
Location:	The leadfill Project: The C-	agent
Field Person	mel: Brooke, Tracu Weather: Clearle	orthy Claudy Temperature: 37
Time (24 Hours):	Activities:	3 3
OGIS	Freestone on size + signed	in camanoffice
0415	Mar Comple + Declad 122 11-	Las Manitar
1020	FEST DIFY Londing for a	ACTIVELY VERTING
na	Cond - marging through	" megreening
1030	DISCUSSION WITH RTG - TH	in Still Merz
	Samples at a crack though	Jory - OK if not
	Ventine	0
1115	IST CODISTES DIGRED ON 11	Crack 540F
1123		unwind 440F
130	2rd CONSTRE Dared 15' daws	wind of crack, 499
135	4Th conister placed, Upward	Conister 34PF
1154	5Th conister placed 1st, band	au, 31°F'
1157	Cost conister placed and bound	108, 44°F
1203	Fith conister placed 3rd bounded	ruy 3101
1250	8th conister placed, 4th bong	dera USOF
1233	lime on oth conister (5	-87
1246	Time on 4th conster (S	540
1249		-1)
1250		-2)
1250		-3)
1253		-7)
1257		(6)
1300		5-5)
1415		Ha remain
1440		19 remaining
1443	Turn off S-2 canister SH Turn off S-3 conister 4+	
		tg
JUUK Signature:	Turn off S-M runister 6+	Date: V2V22
JISHALU	v: KIA	Barrey Maria

5

0 5-10 14 14 5-11-

		ONE	reestone Environmental Services, In 1100 Jadwin Ave, Suite 25 Richland, Washington 9935 509-943-522
	age 212	Field Report	
Date:	21/2022	Client: DTG 1	lewelf
Location:	Dig lond.	Project: DTG	0 -
Field Perso	onnel: Trace Mally		Temperature:
Time (24 Hours): Activities:	Dykstra	
1446	Turn off S	6 conster 0	in-Ha
1455	Turn off S-	5 conjeter, 9.	n Has
14560	Turonoff S-	1 cupister 14in	Haz
1513	Signouro	of office + clu	Seven conisters
	tor TETURN		
	_		
2			
2			
,			

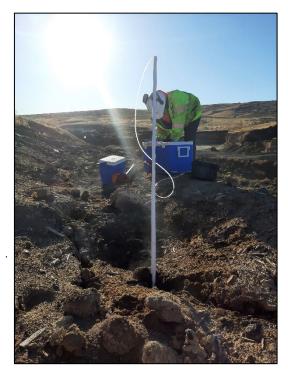


Photo 1: Sampling at location A-1. December 8, 2021

Photo 3: Sampling at location A-3. December 8, 2021

Photo 2: View of sampling down the vent at location A-1. December 8, 2021

Photo 4: Bentonite seal used during sampling at location A-3. December 8, 2021

Photo 5: Sampling at location S-1. January 21, 2022

Photo 7: Sampling at location S-4. January 21, 2022

Photo 6: View of air sampling at S-1, S-2 and S-3. January 21, 2022

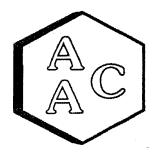


Photo 8: Air sampling at location S-6. January 21, 2022

AIR SAMPLING REPORT DTG Recycling Group

APPENDIX B

DECEMBER SOIL GAS SAMPLING ANALYTICAL LABORATORY REPORT FOR EPA METHOD TO-15 – VOLATILE ORGANIC COMPOUNDS AND TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT : Freestone Environmental PROJECT NAME : DTG Recycle AAC PROJECT NO. : 212309 : 12/21/2021 REPORT DATE

On December 9, 2020, Atmospheric Analysis & Consulting, Inc. received three (3) Tedlar bags for Volatile Organic Compounds and Tentatively Identified Compounds (TICs) analysis by EPA Method TO-15. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

	Client ID	Lab ID
	Sample A-1	212309-26290
a generale.	Sample A-2	212309-26292
	Sample A-3	212309-26294

This analysis is accredited under the laboratory's ISO/IEC 17025:2017 accreditation issued by the ANSI National Accreditation Board, Refer to certificate and scope of accreditation AT-1908. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. These samples were received in Tedlar Bags, which are considered inappropriate containers by EPA Method TO-15. Per NELAC requirements the analytical results should be considered estimated for these samples. AAC originally received six (6) samples, but per client request the analysis of samples "Sample A-1 backup", "Sample A-2 backup" & "Sample A-3 backup" were placed on hold. No other problems were encountered during receiving, preparation, and/or analysis of these samples.

The Technical Director or his designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

Ducko (armony Sucha Parmar, Ph.D.

Technical Director

This report consists of 13 pages. the second s is all a subhase instance i sa arresta is

1996 - Merika Standard, and an angles angles An angles angles angles angles ang Pangles ang An angles ang Pangles ang Pangles ang Pangles ang

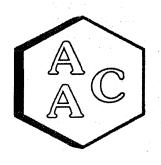
Executive conception of the Paris

Learning that this date is to targetly at the consistent

2225 Sperry Ave., Ventura, CA 93003

www.aaclab.com • (805) 650-1642

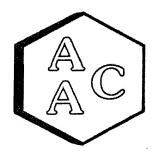
Page 1


Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	T	Sample A	-1			Sample A-	-2		
AAC ID		212309-262	290	Sample	212309-26291			Sample	Method
Date Sampled		12/08/202	1	Reporting	12/08/2021			Reporting	Reporting
Date Analyzed		12/13/202	1	Limit	12/13/2021		Limit	Limit	
Can Dilution Factor		1.00		(SRL)	1.00		(SRL)	(MRL)	
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(MRL)
Chlorodifluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Propene	149000		2000	2000	25100		2000	2000	1,00
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Chloromethane	76700		2000	1000	4090		200	100	0.50
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Vinyl Chloride	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Methanol	125000		2000	10000	11900		200	1000	5.00
1,3-Butadiene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0,50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0,50</td></srl<>	U	200	100	0,50
Bromomethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Chloroethane	1110		200	100	316		200	100	0.50
Dichlorofluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Ethanol	4570		200	400	982		200	400	2.00
Vinyl Bromide	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Acetone	44600		2000	4000	4850		200	400	2.00
Trichlorofluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
2-Propanol (IPA)	39900		2000	4000	4120		200	400	2.00
Acrylonitrile	<srl< td=""><td>U</td><td>200</td><td>400</td><td><srl< td=""><td>U</td><td>200</td><td>400</td><td>2.00</td></srl<></td></srl<>	U	200	400	<srl< td=""><td>U</td><td>200</td><td>400</td><td>2.00</td></srl<>	U	200	400	2.00
1,1-Dichloroethene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>200</td><td>200</td><td><srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<></td></srl<>	U	200	200	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
Allyl Chloride	<srl< td=""><td>U</td><td>200</td><td>200</td><td><srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<></td></srl<>	U	200	200	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
Carbon Disulfide	<srl< td=""><td>U</td><td>200</td><td>400</td><td>586</td><td></td><td>200</td><td>400</td><td>2.00</td></srl<>	U	200	400	586		200	400	2.00
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ū	200	100	0.50
1,1-Dichloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Vinvl Acetate	<srl< td=""><td>U</td><td>200</td><td>200</td><td><srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<></td></srl<>	U	200	200	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
2-Butanone (MEK)	14400		2000	2000	2390		200	200	1.00
cis-1.2-Dichloroethene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Hexane	19500		200	100	8470		200	100	0.50
Chloroform	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Ethyl Acetate	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td><srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0,50</td></srl<></td></srl<>	Ū	200	100	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0,50</td></srl<>	Ŭ	200	100	0,50
Tetrahydrofuran	18300		200	100	3100		200	100	0.50
1.2-Dichloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
1.1.1-Trichloroethane	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td><srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ū	200	100	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
Benzene	116000		2000	1000	25300	-	2000	1000	0.50


Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

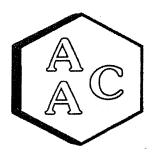
VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID		Sample A		Sample	Sample A-2			Sample	
AAC ID		212309-262		Reporting	212309-26291			Reporting	Method
Date Sampled		12/08/202				12/08/202			Reporting
Date Analyzed		12/13/202	1	Limit	12/13/2021			Limit	Limit
Can Dilution Factor	· · · · ·	1.00		(SRL) [1.00			(SRL)	(MRL)
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(
Carbon Tetrachloride	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Cyclohexane	992		200	100	434		200	100	0.50
1,2-Dichloropropane	<srl'< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl'<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Bromodichloromethane	<srl< td=""><td>. U</td><td>200 .</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	. U	200 .	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
1,4-Dioxane	5570		200	200	1620		200	200	1.00
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Heptane	12500		200	100	5240		200	100	0.50
cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
4-Methyl-2-pentanone (MiBK)	380		200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
trans-1,3-Dichloropropene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
1,1,2-Trichloroethane	<srl< td=""><td>Ura</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ura	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Toluene	17900		200	100	11800		200	100	0.50
2-Hexanone (MBK)	474		200	200	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
Dibromochloromethane	<srl< td=""><td>Ú</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ú	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
1.2-Dibromoethane	<srl< td=""><td>Ū ·</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ū ·	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Chlorobenzene	218		200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Ethylbenzene	13600		200	100	9400		200	100	0.50
m & p-Xylene	9410		200	200	3050		200	200	1.00
Bromoform	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Styrene	2320		200	100	510		200	100	0.50
1.1.2.2-Tetrachloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0,50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0,50</td></srl<>	U	200	100	0,50
o-Xvlene	6090		200	100	2130		200	100	0.50
4-Ethyltoluene	1830		200	100	606		200	100	0.50
1.3.5-Trimethylbenzene	2120		200	100	696		200	100	0.50
1.2.4-Trimethylbenzene	2010		200	100	754		200	100	0.50
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>U</td><td>200</td><td>200</td><td><srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<></td></srl<>	U	200	200	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
1.3-Dichlorobenzene	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td><srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ū	200	100	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ū	200	100	0.50
1.4-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td><srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ŭ	200	100	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
1,2-Dichlorobenzene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
1.2.4-Trichlorobenzene	<srl< td=""><td>U</td><td>200</td><td>400</td><td><srl< td=""><td>Ū</td><td>200</td><td>400</td><td>2.00</td></srl<></td></srl<>	U	200	400	<srl< td=""><td>Ū</td><td>200</td><td>400</td><td>2.00</td></srl<>	Ū	200	400	2.00
Hexachlorobutadiene	<srl< td=""><td>· U ·</td><td>200</td><td>100</td><td><srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	· U ·	200	100	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ū	200	100	0.50
BFB-Surrogate Std. % Recovery		114%				116%			70-130%

U - Compound was not detected at or above the SRL.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

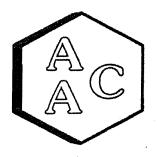

TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

<u>Client ID</u>	Sample A-1 212309-26290						
AACID							
Date Sampled		12/08/2021					
Date Analyzed		12/13/2021					
Can Dilution Factor		1.00					
Compound	Result*	Analysis DF	ID Quality [§]				
Isobutane	4770	200	86				
2-Methyl-1-propene	12700	200	90				
Butane	8790	200	72				
2-Butene	5090	200	81				
Pentane	12300	200	91				
2-Methyl-2-butene	8760	200	70				
2-Methylpentane	6940	200	91				
3-Methylfuran	14400	200	91				
Octane	4300	200	91				
4,4,5-Trimethyl-2-hexene	4320	200	64				
BFB-Surrogate Std. % Recovery	114%						
Client ID	1	Sample A-2					
AAC ID		212309-26291					
AAC ID Date Sampled		212309-26291 12/08/2021					
AACID		212309-26291 12/08/2021 12/13/2021					
AAC ID Date Sampled		212309-26291 12/08/2021					
AAC ID Date Sampled Date Analyzed	Result*	212309-26291 12/08/2021 12/13/2021	ID Quality [§]				
AAC ID Date Sampled Date Analyzed Can Dilution Factor	Result*	212309-26291 12/08/2021 12/13/2021 1.00	90				
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane		212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF	90 72				
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene	5660	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200	90				
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane	5660 4320	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200	90 72				
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene	5660 4320 2140	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200	90 72 81				
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene Pentane 2-Methylpentane 2-Methylpentane 2-Methylfuran	5660 4320 2140 6220	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200 200 200	90 72 81 90				
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene Pentane 2-Methylpentane 2-Methylpentane 2-Methylfuran	5660 4320 2140 6220 3120	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200 200 200 200 200	90 72 81 90 91				
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene Pentane 2-Methylpentane	5660 4320 2140 6220 3120 4980	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200 200 200 200 200 20	90 72 81 90 91 94				
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene Pentane 2-Methylpentane 2-Methylpuran 3-Methylcyclopentene	5660 4320 2140 6220 3120 4980 3370	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200 200 200 200 200 20	90 72 81 90 91 94 90				
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene Pentane 2-Butene Pentane 2-Methylpentane 2-Methylpurtane 3-Methylcyclopentene Methylcyclopentane	5660 4320 2140 6220 3120 4980 3370 2410	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200 200 200 200 200 20	90 72 81 90 91 94 90 91				

* Results obtained via TICs analysis are estimated.

§ Spectral Library match quality ranges from 1-100.

R

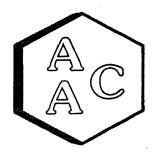

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	Client ID Sample A-3					
AAC ID		212309-262	Sample	Method		
Date Sampled	1	12/08/202	1	Reporting	Reporting	
Date Analyzed	-	12/13/202	1	Limit	Limit	
Can Dilution Factor		1.00		(SRL)		
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	(MRL)	
Chlorodifluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
Propene	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00	
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
Chloromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
Vinyl Chloride	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50	
Methanol	1290		200	1000	5.00	
1,3-Butadiene	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
Bromomethane	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50	
Chloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
Dichlorofluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
Ethanol	<srl< td=""><td>U</td><td>200</td><td>400</td><td>2.00</td></srl<>	U	200	400	2.00	
Vinyl Bromide	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
Acetone	<srl< td=""><td></td><td>200</td><td>400</td><td>2.00</td></srl<>		200	400	2.00	
Trichlorofluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
2-Propanol (IPA)	556		200	400	2.00	
Acrylonitrile	<srl< td=""><td>Ū</td><td>200</td><td>400</td><td>2.00</td></srl<>	Ū	200	400	2.00	
1,1-Dichloroethene	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50	
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00	
Allyl Chloride	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00	
Carbon Disulfide	424		200	400	2.00	
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
1,1-Dichloroethane	<srl< td=""><td>U.</td><td>200</td><td>100</td><td>0.50</td></srl<>	U.	200	100	0.50	
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ū	200	100	0.50	
Vinyl Acetate	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00	
2-Butanone (MEK)	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00	
cis-1,2-Dichloroethene	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
Hexane	150		200	100	0.50	
Chloroform	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
Ethyl Acetate	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50	
Tetrahydrofuran	216		200	100	0.50	
1,2-Dichloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50	
1,1,1-Trichloroethane	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ū	200	100	0.50	
Benzene	1470		200	100	0.50	

Laboratory Analysis Report


CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

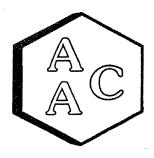
VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Client ID	T	Sample A-		Sample	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		212309-26292				Method
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Date Sampled	1	12/08/202	1		Renorting
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Date Analyzed	1	12/13/202	1	Limit	
CompoundResultQualifierAnalysis DF(MRLxDF's)Carbon Tetrachloride $<$ SRLU2001000.50Cyclohexane $<$ SRLU2001000.50I.2-Dichloropropane $<$ SRLU2001000.50Bromodichloromethane $<$ SRLU2001000.50I.2-Dichloropropane $<$ SRLU2001000.50Bromodichloromethane $<$ SRLU2001000.502,2,4-Trimethylpentane $<$ SRLU2001000.502,2,4-Trimethylpentane $<$ SRLU2001000.504-Methyl-2-pentanone (MiBK) $<$ SRLU2001000.501,1,2-Trichloroptopene $<$ SRLU2001000.501,1,2-Trichloropthane $<$ SRLU2001000.502-Hexanone (MBK) $<$ SRLU200 <t< td=""><td>Can Dilution Factor</td><td></td><td>1.00</td><td></td><td>(SRL)</td><td></td></t<>	Can Dilution Factor		1.00		(SRL)	
$\begin{array}{c c} Cyclohexane & < SRL & U & 200 & 100 & 0.50 \\ 1,2-Dichloropropane & < SRL & U & 200 & 100 & 0.50 \\ Bromodichloromethane & < SRL & U & 200 & 100 & 0.50 \\ If-Dioxane & 438 & 200 & 200 & 1.00 \\ Trichloroethene (TCE) & $	Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	(MRL)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Carbon Tetrachloride				100	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cyclohexane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dichloropropane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromodichloromethane	<srl< td=""><td>U .</td><td>200</td><td>100</td><td>0.50</td></srl<>	U .	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,4-Dioxane	438		200	200	1.00
Heptane 194 200 100 0.50 cis-1,3-Dichloropropene \leq SRL U 200 100 0.50 4-Methyl-2-pentanone (MiBK) \leq SRL U 200 100 0.50 trans-1,3-Dichloropropene \leq SRL U 200 100 0.50 1,1,2-Trichloroethane \leq SRL U 200 100 0.50 Toluene 1540 200 100 0.50 2-Hexanone (MBK) \leq SRL U 200 100 0.50 Dibromochloromethane \leq SRL U 200 100 0.50 12-Dibromoethane \leq SRL U 200 100 0.50 Tetrachloroethane \leq SRL U 200 100 0.50 Chlorobenzene \leq SRL U 200 100 0.50 Ehvlbenzene 228 200 200 1.00 0.50 Styrene S28 200 100 0.50 0.50 0.	Trichloroethene (TCE)	<srl< td=""><td></td><td></td><td>100</td><td>0,50</td></srl<>			100	0,50
cis-1_3-Dichloropropene $<$ SRL U 200 100 0.50 4-Methyl-2-pentanone (MiBK) SRL U 200 100 0.50 trans-1_3-Dichloropropene $<$ SRL U 200 100 0.50 trans-1_3-Dichloropropene $<$ SRL U 200 100 0.50 Toluene 1540 200 100 0.50 2-Hexanone (MBK) SRL U 200 100 0.50 1_2-Dibromochlarne $<$ SRL U 200 100 0.50 1_2-Dibromocthane $<$ SRL U 200 100 0.50 Tetrachloroethene (PCE) $<$ SRL U 200 100 0.50 Ethylbenzene 28 200 200 1.00 0.50 Bromoform $<$ SRL U 200 100 0.50 Styrene 114 200 100 0.50 1.1,2,2-Tetrachloroethane SRL U 200 100 0.50 1	2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Heptane	194		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Toluene 1540 200 100 0.50 2-Hexanone (MBK) \leq SRL U 200 200 1.00 Dibromochloromethane \leq SRL U 200 100 0.50 Dibromochloromethane \leq SRL U 200 100 0.50 12-Dibromochlane \leq SRL U 200 100 0.50 Tetrachloroethane \leq SRL U 200 100 0.50 Chlorobenzene \leq SRL U 200 100 0.50 Ethylbenzene 2040 200 100 0.50 Bromoform \leq SRL U 200 100 0.50 Bromoform \leq SRL U 200 100 0.50 Styrene 114 200 100 0.50 1,1,2,2-Tetrachloroethane \leq SRL U 200 100 0.50 4.Ethyltoluene 388 200 100 0.50 1,2,4-Trimethylbenzene 158		<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1,2-Trichloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Toluene	1540		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2-Hexanone (MBK)	<srl< td=""><td>Ŭ</td><td>200</td><td>200</td><td>1.00</td></srl<>	Ŭ	200	200	1.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dibromochloromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dibromoethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Ethylbenzene 2040 200 100 0.50 m & p-Xylene 528 200 200 1.00 Bromoform <srl< td=""> U 200 100 0.50 Bromoform <srl< td=""> U 200 100 0.50 Styrene 114 200 100 0.50 1,1,2,2-Tetrachloroethane <srl< td=""> U 200 100 0.50 1,2,2-Tetrachloroethane <srl< td=""> U 200 100 0.50 1,3,2-Trimethylbenzene 130 200 100 0.50 1,3,5-Trimethylbenzene 158 200 100 0.50 1,2,4-Trimethylbenzene 176 200 100 0.50 1,3-Dichlorobenzene <srl< td=""> U 200 100 0.50 1,3-Dichlorobenzene <srl< td=""> U 200 100 0.50 1,4-Dichlorobenzene <srl< td=""> U 200 100 0.50 1,2-Dichlorobenzene <srl< td=""> U <</srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<>	Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlorobenzene	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ethylbenzene	2040		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m & p-Xylene	528		200	200	1.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromoform	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Styrene	114		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1,2,2-Tetrachloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		388		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4-Ethyltoluene	130		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.3.5-Trimethylbenzene	158		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					100	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			U			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
1,2-Dichlorobenzene <srl< th=""> U 200 100 0.50 1,2,4-Trichlorobenzene <srl< td=""> U 200 400 2.00 Hexachlorobutadiene <srl< td=""> U 200 100 0.50</srl<></srl<></srl<>						
1,2,4-Trichlorobenzene <srl< th="">U2004002.00Hexachlorobutadiene<srl< td="">U2001000.50</srl<></srl<>						
Hexachlorobutadiene <srl 0.50<="" 100="" 200="" td="" u=""><td></td><td></td><td></td><td></td><td></td><td></td></srl>						
DED-DULUQUE DUL 70 BECOVERV 1 1 11/20 1 1 10/20 1 1 10/20 1	BFB-Surrogate Std. % Recovery		102%	~~~~ I	<u>1××</u>	70-130%

U - Compound was not detected at or above the SRL.

 $\textcircled{\blue}{\blue}$

Laboratory Analysis Report


CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

Client ID	Sample A-3 212309-26292					
AACID						
Date Sampled		12/08/2021				
Date Analyzed		12/13/2021				
Can Dilution Factor		1.00				
Compound	Result*	Analysis DF	ID Quality [§]			
Decane	268	200	95			
2-Ethyl-1-hexanol	322	200	90			
2,4-Dimethyl-2-decene	212	200	64			
4-Undecene	228	200	93			
Undecane	518	200	94			
1-Ethenyl-4-ethylbenzene	222	200	76			
2,3-Dihydro-4-methyl-1H-indene	228	200	83			
Dodecane	378	200	93			
2,4-Diethyl-1-methylbenzene	222	200	30			
BFB-Surrogate Std. % Recovery	102%					

* Results obtained via TICs analysis are estimated.

§ Spectral Library match quality ranges from 1-100.

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 12/13/2021 MATRIX : High Purity N₂ UNITS : PPB (v/v)

INSTRUMENT ID : GC/MS-04 CALIBRATION STD ID : PS101121-02 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

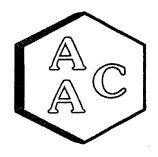
Continuing Calibration Verification of the 12/10/2021 Calibration

Analyte Compounds		Source ¹	CCV ²	% Recovery ³	Analyte Compounds (Continued)	Source ¹	CCV ²	% Recover
4-BFB (surrogate standard)		10.00	10.50	105	1,2-Dichloropropane	10.60	11.40	108
Chlorodifluoromethane		10,70	10.70	100	Bromodichloromethane	10.50	10.93	104
Propene		10.90	11.11	102	1,4-Dioxane	10.50	12.35	118
Dichlorodifluoromethane		10.30	11.42	111	Trichloroethene (TCE)	10.50	11.16	106
Dimethyl Ether		10.70	10.15	95	2,2,4-Trimethylpentane	10.60	11.63	110
Chloromethane		10.30	11.12	108	Methyl Methacrylate	10.60	11.58	109
Dichlorotetrafluoroethane		9.80	11.43	117	Heptane	10.60	11.33	107
Vinyl Chloride		10.10	12.20	121	cis-1,3-Dichloropropene	10.20	11.20	110
Acetaldehyde		20,50	21.50	105	4-Methyl-2-pentanone (MiBK)	10.20	11.04	108
Methanol		16.20	17.94	111	trans-1,3-Dichloropropene	10.10	11.48	114
1,3-Butadiene		10.70	13.08	122	1,1,2-Trichloroethane	10.80	11.32	105
Bromomethane		10.30	12.54	122	Toluene	10.80	11.97	111
Chloroethane		9,90	11.39	115	2-Hexanone (MBK)	10.70	11.85	111
Dichlorofluoromethane		10.40	12.22	118	Dibromochloromethane	10.60	11.30	107
Ethanol		10.50	12.62	120	. 1,2-Dibromoethane	10.90	11.85	109
Vinyl Bromide		10,60	12.41	117	Tetrachloroethene (PCE)	10.50	10.95	104
Acrolein		10.90	12.79	117	Chlorobenzene	10.90	11.63	107
Acetone		10.40	11.01	106	Ethylbenzene	10.90	12.81	118
Trichlorofluoromethane		10,20	11.22	110	m & p-Xylene	21.60	27.18	126
2-Propanol (IPA)	HR	10.90	14.76	135	Bromoform	10.80	12.06	112
Acrylonitrile		11.30	11.45	101	Styrene	10,70	13.20	123
1,1-Dichloroethene		10.70	12.05	113	1,1,2,2-Tetrachloroethane	10.70	12.03	112
Methylene Chloride (DCM)		10.90	11.56	106	o-Xylene	10.70	12.47	117
TertButanol (TBA)	HR	10.80	14.74	136	1,2,3-Trichloropropane	10.80	11.92	110
Allyl Chloride		10,90	10.05	92	Isopropylbenzene (Cumene)	10.80	12.55	116
Carbon Disulfide		10.50	11.58	110	α-Pinene	11.60	13.65	118
Trichlorotrifluoroethane		10.90	11.45	105	2-Chlorotoluene	10.90	12.20	112
rans-1,2-Dichloroethene		10.40	11.54	111	n-Propylbenzene	10.20	11.84	116
I,I-Dichloroethane		10.30	11.01	107	4-Ethyltoluene	10.60	12,53	118
Methyl Tert Butyl Ether (MTBE)		10.80	12.75	118	1,3,5-Trimethylbenzene	10.50	12.33	117
Vinyl Acetate		11.00	12.01	109	β-Pinene	9.30	11.20	120
2-Butanone (MEK)		10.50	10.86	103	1,2,4-Trimethylbenzene	10.50	12.36	118
sis-1,2-Dichloroethene		10.50	11.82	113	Benzyl Chloride (a-Chlorotoluene)	10.60	12.11	114
lexane		10.70	11.96	112	1,3-Dichlorobenzene	10.60	13.01	123
Chloroform		10.60	11.25	106	1,4-Dichlorobenzene	10.40	12.75	123
Ethyl Acetate		10.60	11.19	106	Sec-ButylBenzene	10.80	13.32	123
Fetrahydrofuran		10.60	12.29	116	1,2-Dichlorobenzene	10.30	12.24	119
,2-Dichloroethane		10.60	11.30	107	n-ButylBenzene	10.60	13.00	123
,1,1-Trichloroethane		10.50	10.92	104	1,2-Dibromo-3-Chloropropane	10.70	12.72	119
Benzene		10.60	11.74	111	1,2,4-Trichlorobenzene	10.50	11.43	109
Carbon Tetrachloride		10.70	11,18	104	Naphthalene	10.50	12.34	118
Cyclohexane		10.50	11.64	111	Hexachlorobutadiene	10.70	12.19	114

¹Concentration of analyte compound in certified source standard.

² Measured result from daily Continuing Calibration Verification (CCV).

 3 The acceptable range for analyte recovery is 100±30%.


HR - Recovery for this compound was high. Results should be considered biased high.

2225 Sperry Ave., Ventura, CA 93003

 (\mathbf{x})

.

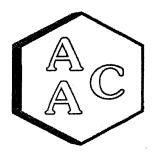
Page 8

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 12/13/2021 MATRIX : High Purity N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-04 CALIBRATION STD ID : PS101121-02 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Laboratory Control Spike Analysis

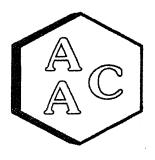

Sustan Manitoring Company da	Sample	Spike	LCS ¹	LCSD ¹	LCS	LCSD ¹	RPD ³
System Monitoring Compounds	Concentration	Added	Recovery	Recovery	% Recovery ²	% Recovery ²	KPD
4-BFB (surrogate standard)	0.0	10.00	10.50	10.44	105	104.4	0.6
1,1-Dichloroethene	0.0	10.70	12.05	11.87	113	111	1.5
Methylene Chloride (DCM)	0.0	10.90	11.56	11.34	106	104	1.9
Benzene	0.0	10.60	11.74	11.62	111	110	1.0
Trichloroethene (TCE)	0.0	10.50	11.16	11.15	106	106	0.1
Toluene	0.0	10.80	11.97	11.90	111	110	0.6
Tetrachloroethene (PCE)	0.0	10.50	10.95	10.95	104	104	0.0
Chlorobenzene	0.0	10.90	11.63	11.46	107	105	1.5
Ethylbenzene	0.0	10.90	12.81	12.83	118	118	0.2
m & p-Xylene	0.0	21.60	27.18	26.92	126	125	1.0
o-Xylene	0.0	10.70	12.47	12.33	117	115	1.1

¹ Laboratory Control Spike (LCS) / Laboratory Control Spike Duplicate (LCSD)

 2 The acceptable range for analyte recovery is 100 \pm 30%.

³ Relative Percent Difference (RPD) between LCS recovery and LCSD recovery (acceptable range is <25%).

QUALITY CONTROL / QUALITY ASSURANCE REPORT


ANALYSIS DATE : 12/13/2021 MATRIX : High Purity He or N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-04 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15 Method Blank Analysis

Analyte Compounds	MB 121321	Reporting Limit (RL)	Analyte Compounds (Continued)	MB 121321	Reporting Limit (RL)
4-BFB (surrogate standard)	97%	100±30%	1,2-Dichloropropane	<rl< td=""><td>0.5</td></rl<>	0.5
Chlorodifluoromethane	<rl< td=""><td>0.5</td><td>Bromodichloromethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Bromodichloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Propene	<rl< td=""><td>1.0</td><td>1,4-Dioxane</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	1.0	1,4-Dioxane	<rl< td=""><td>1.0</td></rl<>	1.0
Dichlorodifluoromethane	<rl< td=""><td>0.5</td><td>Trichloroethene (TCE)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Trichloroethene (TCE)	<rl< td=""><td>0.5</td></rl<>	0.5
Dimethyl Ether	<rl< td=""><td>0.5</td><td>2,2,4-Trimethylpentane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	2,2,4-Trimethylpentane	<rl< td=""><td>0.5</td></rl<>	0.5
Chloromethane	<rl< td=""><td>0.5</td><td>Methyl Methacrylate</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Methyl Methacrylate	<rl< td=""><td>0.5</td></rl<>	0.5
Dichlorotetrafluoroethane	<rl< td=""><td>0.5</td><td>Heptane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Heptane	<rl< td=""><td>0.5</td></rl<>	0.5
Vinyl Chloride	<rl< td=""><td>0.5</td><td>cis-1,3-Dichloropropene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	cis-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5
Acetaldehyde	<rl< td=""><td>5.0</td><td>4-Methyl-2-pentanone (MiBK)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	5.0	4-Methyl-2-pentanone (MiBK)	<rl< td=""><td>0.5</td></rl<>	0.5
Methanol	<rl< td=""><td>5.0</td><td>trans-1,3-Dichloropropene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	5.0	trans-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5
1,3-Butadiene	<rl< td=""><td>0.5</td><td>1,1,2-Trichloroethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,1,2-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Bromomethane	<rl< td=""><td>0.5</td><td>Toluene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Toluene	<rl< td=""><td>0.5</td></rl<>	0.5
Chloroethane	<rl< td=""><td>0.5</td><td>2-Hexanone (MBK)</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	2-Hexanone (MBK)	<rl< td=""><td>1.0</td></rl<>	1.0
Dichlorofluoromethane	<rl< td=""><td>0.5</td><td>Dibromochloromethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Dibromochloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Ethanol	<rl< td=""><td>2.0</td><td>1,2-Dibromoethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	1,2-Dibromoethane	<rl< td=""><td>0.5</td></rl<>	0.5
Vinyl Bromide	<rl< td=""><td>0.5</td><td>Tetrachloroethene (PCE)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Tetrachloroethene (PCE)	<rl< td=""><td>0.5</td></rl<>	0.5
Acrolein	<rl< td=""><td>1.0</td><td>Chlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	Chlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Acetone	<rl< td=""><td>2.0</td><td>Ethylbenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	Ethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Trichlorofluoromethane	<rl< td=""><td>0.5</td><td>m & p-Xylene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	m & p-Xylene	<rl< td=""><td>1.0</td></rl<>	1.0
2-Propanol (IPA)	<rl< td=""><td>2.0</td><td>Bromoform</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	Bromoform	<rl< td=""><td>0.5</td></rl<>	0.5
Acrylonitrile	<rl< td=""><td>2.0</td><td>Styrene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	Styrene	<rl< td=""><td>0.5</td></rl<>	0.5
1,1-Dichloroethene	<rl< td=""><td>0.5</td><td>1,1,2,2-Tetrachloroethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,1,2,2-Tetrachloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Methylene Chloride (DCM)	<rl< td=""><td>1.0</td><td>o-Xylene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	o-Xylene	<rl< td=""><td>0.5</td></rl<>	0.5
TertButanol (TBA)	<rl< td=""><td>0.5</td><td>1,2,3-Trichloropropane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,2,3-Trichloropropane	<rl< td=""><td>0.5</td></rl<>	0.5
Allyl Chloride	<rl< td=""><td>1.0</td><td>Isopropylbenzene (Cumene)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	Isopropylbenzene (Cumene)	<rl< td=""><td>0.5</td></rl<>	0.5
Carbon Disulfide	<rl< td=""><td>2.0</td><td>α-Pinene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	α-Pinene	<rl< td=""><td>0.5</td></rl<>	0.5
Trichlorotrifluoroethane	<rl< td=""><td>0.5</td><td>2-Chlorotoluene</td><td><rl< td=""><td>0,5</td></rl<></td></rl<>	0.5	2-Chlorotoluene	<rl< td=""><td>0,5</td></rl<>	0,5
trans-1,2-Dichloroethene	<rl< td=""><td>0.5</td><td>n-Propylbenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	n-Propylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
I, I-Dichloroethane	<rl< td=""><td>0.5</td><td>4-Ethyltoluene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	4-Ethyltoluene	<rl< td=""><td>0.5</td></rl<>	0.5
Methyl Tert Butyl Ether (MTBE)	<rl< td=""><td>0.5</td><td>1,3,5-Trimethylbenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,3,5-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Vinyl Acetate	<rl< td=""><td>1.0</td><td>β-Pinene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	β-Pinene	<rl< td=""><td>0.5</td></rl<>	0.5
2-Butanone (MEK)	<rl< td=""><td>1.0</td><td>1,2,4-Trimethylbenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	1,2,4-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
cis-1,2-Dichloroethene	<rl< td=""><td>0.5</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	Benzyl Chloride (a-Chlorotoluene)	<rl< td=""><td>1.0</td></rl<>	1.0
Hexane	<rl< td=""><td>0.5</td><td>1,3-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,3-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Chloroform	<rl< td=""><td>0.5</td><td>1,4-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,4-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Ethyl Acetate	<rl< td=""><td>0.5</td><td>Sec-ButylBenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Sec-ButylBenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Fetrahydrofuran	<rl< td=""><td>0.5</td><td>1,2-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,2-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
,2-Dichloroethane	<rl< td=""><td>0.5</td><td>n-ButylBenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	n-ButylBenzene	<rl< td=""><td>0.5</td></rl<>	0.5
,1,1-Trichloroethane	<rl< td=""><td>0.5</td><td>1,2-Dibromo-3-Chloropropane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,2-Dibromo-3-Chloropropane	<rl< td=""><td>0.5</td></rl<>	0.5
Benzene	<rl< td=""><td>0.5</td><td>1,2,4-Trichlorobenzene</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	0.5	1,2,4-Trichlorobenzene	<rl< td=""><td>2.0</td></rl<>	2.0
Carbon Tetrachloride	<rl< td=""><td>0.5</td><td>Naphthalene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	Naphthalene	<rl< td=""><td>1.0</td></rl<>	1.0
Cyclohexane	<rl< td=""><td>0.5</td><td>Hexachlorobutadiene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Hexachlorobutadiene	<rl< td=""><td>0.5</td></rl<>	0.5

Page 10

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 12/13/2021 MATRIX : Air UNITS : PPB (v/v)

INSTRUMENT ID : GC/MS-04 ANALYST : MB/RC DILUTION FACTOR¹ : x19.94

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15 Duplicate Analysis of AAC Sample ID: 212241-25954

Analyte Compounds	Sample	Duplicate	RPD ²	Analyte Compounds (Continued)	Sample	Duplicate	RPD ²
4-BFB (surrogate standard)	9.55	9.57	0.2	1,2-Dichloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chlorodifluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Bromodichloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Bromodichloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Bromodichloromethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Propene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,4-Dioxane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,4-Dioxane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,4-Dioxane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorodifluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Trichloroethene (TCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Trichloroethene (TCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Trichloroethene (TCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dimethyl Ether	<srl< td=""><td><srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2,2,4-Trimethylpentane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chloromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl ***<="" td=""><td><srl ***<="" td=""><td>NA</td></srl></td></srl></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl ***<="" td=""><td><srl ***<="" td=""><td>NA</td></srl></td></srl></td></srl<>	NA	Methyl Methacrylate	<srl ***<="" td=""><td><srl ***<="" td=""><td>NA</td></srl></td></srl>	<srl ***<="" td=""><td>NA</td></srl>	NA
Dichlorotetrafluoroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Heptane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Vinyl Chloride	<srl< td=""><td><srl< td=""><td>NA</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	cis-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acetaldehyde	<srl< td=""><td><srl< td=""><td>NA</td><td>4-Methyl-2-pentanone (MiBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>4-Methyl-2-pentanone (MiBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	4-Methyl-2-pentanone (MiBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Methanol	<srl< td=""><td><srl< td=""><td>NA</td><td>trans-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>trans-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	trans-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1,3-Butadiene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,1,2-Trichloroethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Bromomethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Toluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Toluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Toluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chloroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Hexanone (MBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorofluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Dibromochloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Dibromochloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Dibromochloromethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Ethanol	<srl< td=""><td><srl< td=""><td>NA</td><td>1,2-Dibromoethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,2-Dibromoethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2-Dibromoethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
/inyl Bromide	<srl< td=""><td><srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Tetrachloroethene (PCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acrolein	<srl< td=""><td><srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Chlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acetone	250	253	1.1	Ethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Frichlorofluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>m & p-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>m & p-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	m & p-Xylene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
-Propanol (IPA)	<srl< td=""><td><srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Bromoform	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acrylonitrile	<srl< td=""><td><srl< td=""><td>NA</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Styrene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
,1-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,1,2,2-Tetrachloroethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Aethylene Chloride (DCM)	<srl< td=""><td><srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	o-Xylene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
ertButanol (TBA)	<srl< td=""><td><srl< td=""><td>NA</td><td>1,2,3-Trichloropropane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,2,3-Trichloropropane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2,3-Trichloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Allyl Chloride	<srl< td=""><td><srl< td=""><td>NA</td><td>Isopropylbenzene (Cumene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Isopropylbenzene (Cumene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Isopropylbenzene (Cumene)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Carbon Disulfide	<srl< td=""><td><srl< td=""><td>NA</td><td>a-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>a-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	a-Pinene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
richlorotrifluoroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>2-Chlorotoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2-Chlorotoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Chlorotoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
ans-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>n-Propylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>n-Propylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	n-Propylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
,1-Dichloroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>4-Ethyltoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>4-Ethyltoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	4-Ethyltoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
fethyl Tert Butyl Ether (MTBE)	<srl< td=""><td><srl< td=""><td>NA</td><td>1,3,5-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,3,5-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,3,5-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
/inyl Acetate	<srl< td=""><td><srl< td=""><td>NA</td><td>β-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>β-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	β-Pinene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
-Butanone (MEK)	<srl< td=""><td><srl< td=""><td>NA</td><td>1,2,4-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,2,4-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2,4-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
is-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<>	NA	Benzyl Chloride (a-Chlorotoluene)	<srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td></srl<>	NA
lexane	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1.3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td></td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1.3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td></td></srl<></td></srl<></td></srl<>	NA	1.3-Dichlorobenzene	<srl< td=""><td><srl< td=""><td></td></srl<></td></srl<>	<srl< td=""><td></td></srl<>	
hloroform	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1.4-Dichlorobenzene</td><td><srl <srl< td=""><td><srl< td=""><td> </td></srl<></td></srl<></srl </td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1.4-Dichlorobenzene</td><td><srl <srl< td=""><td><srl< td=""><td> </td></srl<></td></srl<></srl </td></srl<>	NA	1.4-Dichlorobenzene	<srl <srl< td=""><td><srl< td=""><td> </td></srl<></td></srl<></srl 	<srl< td=""><td> </td></srl<>	
thyl Acetate	<srl< td=""><td><srl< td=""><td>NA</td><td>Sec-ButylBenzene</td><td><srl SRL</srl </td><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Sec-ButylBenzene</td><td><srl SRL</srl </td><td><srl< td=""><td>NA</td></srl<></td></srl<>	NA	Sec-ButylBenzene	<srl SRL</srl 	<srl< td=""><td>NA</td></srl<>	NA
etrahydrofuran	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1.2-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td></td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1.2-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td></td></srl<></td></srl<></td></srl<>	NA	1.2-Dichlorobenzene	<srl< td=""><td><srl< td=""><td></td></srl<></td></srl<>	<srl< td=""><td></td></srl<>	
2-Dichloroethane	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>n-ButylBenzene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>n-ButylBenzene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<>	NA	n-ButylBenzene	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td></srl<></srl 	NA
1,1-Trichloroethane	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1,2-Dibromo-3-Chloropropane</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1,2-Dibromo-3-Chloropropane</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<>	NA	1,2-Dibromo-3-Chloropropane	<srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td></srl<>	NA
enzene	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td><td>1,2,4-Trichlorobenzene</td><td><srl <srl< td=""><td><srl <srl< td=""><td></td></srl<></srl </td></srl<></srl </td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td><td>1,2,4-Trichlorobenzene</td><td><srl <srl< td=""><td><srl <srl< td=""><td></td></srl<></srl </td></srl<></srl </td></srl<></srl 	NA	1,2,4-Trichlorobenzene	<srl <srl< td=""><td><srl <srl< td=""><td></td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td></td></srl<></srl 	
arbon Tetrachloride	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td><td>Naphthalene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td><td>Naphthalene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<></srl 	NA	Naphthalene	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td></srl<></srl 	NA

¹Dilution factor is the product of the Canister Dilution Factor and the Analysis Dilution Factor.

² Relative Percent Difference (RPD) between Sample analysis and Duplicate analysis (acceptable range is <25%).

SRL - Sample Reporting Limit (minimum)

Page 11

212309

CHAIN OF CUSTODY AND ANALYSIS REQUEST – Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields.

Atmospheric Analysis and Consultin	ng · Phone: 805	5-650-1642 ·	Email: info@	Daaclab.com	1534 East	tman Ave Su	uite A, Ventur	a, CA 93003	AAC Project No	.:
Client/Company Name	Project Name	Project Name			1		lysis Requeste		Send Report To	(Name/Email/Address)
Freestone Environmented Project Manager Name	DTG leight Project Number							Kiro Mura		
	Project Num	ber			fer	.0			kimmurra	y @ gofreestone kom
Kira Murray					K.	$ \delta $			1100 Jodwint	We, Suite 250 und
Turnaround Time	Sampler Nan	ne			างง	Ē			Send Invoice To	(Name/Email/Address)
🗆 Rush 24 h 🛛 🗆 Same Day	Print: Tra	. Malla	20		DD	Γ			kiramurray	egofreesore con Aue, suite 250
🗆 Rush 48 h 🛛 🛛 🗖 Days	1			_	R S	+			NOO Judinin	AUE, SUITE 250
🗆 Rush 72 h 🛛 🕅 Kannal	Signature:	/s/11	alf	2	spenered Su Compands	VOCS				JChlord, WA
Client Comula Name		Sampling	Sampling	Container	22	Ŏ				Sample Received
Client Sample Name	Sample ID	Date	Time	Type/Qty	5	>			Lab ID	via:
Somple A-1	A-1	12/8/21	133Le	Tedlocity	X	χ	26290			□FedEx
Sample A-1 backup	A-1 backup	1218/21	1342	Tedler	X	X	26291			□UPS □Courier
Somple A-2	A-2	12/8/21	1355	Tedbo 1	X	X	26292			☐Other
Somple A-2 backup	A-2 backup	12/8/21	1358	Tedla 1	X	X	26293			Temperature
Somple A-3	A-3	1218121	1425	Tecller 1	X	X	26294			1°C
Sandle A3 backing	A-3 backing		1428	rediet 1	X	X	26295			Thermometer
	1	101010	1100				-069			Initials
	Jesed						<u>}</u>			Returned Eqmt
LNot	N 12/8	21					1500	5122		Total cans:
	min					Not	In fel			Unused cans:
										Flow Controllers:
Client Notes/Special Instructions:		10	- (~		EDD?	LAB USE ONL	Y	
Only run bac	kup So	mpes	17 71	we is	CC .		□Yes	Notes:		
ellent Notes/Special Instructions: Only run bac leak [problem with	n orgin	al scr	qe				₩ NO			
i kelinaliishea kv		Date	Received E	3v			Date			
Print: Tracy Mallgren		1218/21	Print:		1					
Signature:	~	Time 1500			_/		Time			
Relinquished By		Date	Received E Print:	зу Л/	\leq		Date 12/9/21			
Signature:		Time	Signature:	Chri	-1 . A	ulor.	Time 0722			
		· · · ·			- \	. <u> </u>	1	<u> Leijer et ditere</u>		<u>, and the second s</u>

212309

CHAIN OF CUSTODY AND ANALYSIS REQUEST – Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields.

Atmospheric Analysis and Consultin	ng • Phone: 805	5-650-1642 ·	Email: info@	Daaclab.com	1534 Eas	tman Ave S	, uite A. Ventu	ra. CA 93003	AAC Project N	
client/company Name	Project Name	9	· · · ·				lysis Request			• (Name/Email/Address)
Freestone Environmented Project Manager Name	DTG & Project Num	eagle					İ – – –		Kiro Mur	
Kirce Murray	Project Num	ber 🖜			6	.^			kimmuse	1. Q acfreestore
					Sulfac	Ö			100 Jadwin	Ave, suite 250
Turnaround Time	Sampler Nam	ne			120	Ľ			Sena Invoice	O (Name/Email/Address)
Rush 24 h Same Day	Print: Trad	mila	ren			F			Kiramurra	6 cotroesment
🗆 Rush 48 h 🛛 5 Days	Signature:			_	2 2	+			1100 Julion	AUG SUITE 250
🗆 Rush 72 h 🕅 Ki Normal	Signature:	10-711		2	speciesed	VOCS				Richland, WA
Client Sample Name	Commis ID	Sampling	Sampling	Container	D G	ŏ	· · ·		LAE	USE ONLY
	Sample ID	Date	Time	Type/Qty	5	2			Lab ID	Sample Received
Somple A-1	A-1	12821	1336	Tedlocity	X	χ	26290			
Somple A-1 backup	A-1 backsp	12/8/21	1342	Fidler	X	X	1			
Somple A-2	A-2	12/8/21	1255	Tealor			26291			Courier
Somple A-2 backup	A-2 backup		12.50		X	<u>×</u>	26292			Dother
		10 0.0	1500	Teille		X	26293			Temperature
	A-3	12/8/21	1425	Jeller 1	×	×	26294			C Thermometer
Sample A3 backup	H-3 backy	12/8/21	1428	Tedlet	X	X	26295			ID
					1					Initials
A	12sed				1	-				Returned Egmt
NO1-	1218	21					12500	F121		Total cans:
No	NSC- M 12/81					12-1	121	8122		
						Not	an los			Unused cans:
		·	<u> </u>							Flow Controllers:
Office the state of the state o						_				
elient Notes/Special Instructions: Only run bac leak problem with	$1 - c_{-}$	mbe	·+++	no is		· · · · · · · · · · · · · · · · · · ·	EDD?	LAB USE ONL	Y	
Unicy run bac	kup sa	mpes	17 11	we is	C		□Yes	Notes:		
leak / Droblem wit	in orgin	ial sam	qie				⊠ No			
Reinguispag Ry	0	Date	Received I		······································					
Print: Tracy Mallanen		1218/21	Print:	зу	1		Date		, 2월 17년 17일 - 2일 - 2일 2일 - 일종 (1993) - 2일 - 2일	
Signature:		Time 1500					Time			
Relinquished By		Date	Received I	By	/		Date 12/9/2			
Signature:		Time	Print:		$\frac{1}{1}$					
		1000	Signature:	Ch	re[. /	- los	Time 0729		<u>是《新教教书》。</u>	
				//			1 () () () () () () () () () (

AAC COC Rev 3


Ups

AIR SAMPLING REPORT DTG Recycling Group

APPENDIX C

DECEMBER SOIL GAS SAMPLING

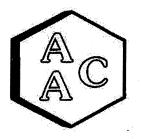
ANALYTICAL LABORATORY REPORT FOR METHOD ASTM D5504 - TOTAL REDUCED SULFUR

CLIENT: Freestone EnvironmentalPROJECT NAME: DTG RecycleAAC PROJECT NO.: 212309REPORT DATE: 12/20/2021

On December 9, 2021, Atmospheric Analysis & Consulting, Inc. received six (6) Tedlar Bags for Total Reduced Sulfur analysis by ASTM D-5504. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab No.
Sample A-1	212309-26290
Sample A-1 backup	212309-26291
Sample A-2	212309-26292
Sample A-2 backup	212309-26293
Sample A-3	212309-26294
Sample A-3 backup	212309-26295

This analysis is performed in accordance with AAC's Quality Manual. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

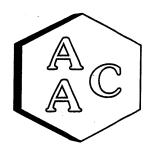

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. Per client request, the samples labeled "backup" (26291, 26293, 26295) were placed on hold and not analyzed. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data.

If you have any questions or require further explanation of data results, please contact the undersigned.

Sucha Parmar, Ph.D.

This report consists of 4 pages.

Technical Director


LABORATORY ANALYSIS REPORT

CLIENT : Freestone Environmental PROJECT NO. : 212309 MATRIX : AIR UNITS : ppmV SAMPLING DATE : 12/08/2021 RECEIVING DATE : 12/09/2021 ANALYSIS DATE : 12/09/2021 REPORT DATE : 12/20/2021

Client ID	Sample A-1	Sample A-2	Sample A-3
AAC ID	212309-26290	212309-26292	212309-26294
Analyte	Result	Result	Result
Hydrogen Sulfide	12.4	0.490	< 0.050
COS / SO2	0.472	0.055	0.137
Methyl Mercaptan	11.9	1.75	< 0.050
Ethyl Mercaptan	0.091	< 0.050	< 0.050
Dimethyl Sulfide	18.3	6.34	< 0.050
Carbon Disulfide	0.141	< 0.050	< 0.050
Isopropyl Mercaptan	< 0.050	< 0.050	< 0.050
tert-Butyl Mercaptan	< 0.050	< 0.050	< 0.050
n-Propyl Mercaptan	< 0.050	< 0.050	< 0.050
Methylethylsulfide	< 0.050	< 0.050	< 0.050
sec-Butyl Mercaptan / Thiophene	1.08	0.329	< 0.050
iso-Butyl Mercaptan	< 0.050	< 0.050	< 0.050
Diethyl Sulfide	< 0.050	< 0.050	< 0.050
n-Butyl Mercaptan	< 0.050	< 0.050	< 0.050
Dimethyl Disulfide	0.386	0.319	< 0.050
2-Methylthiophene	0.606	0.211	< 0.050
3-Methylthiophene	0.355	0.112	< 0.050
Tetrahydrothiophene	0.406	0.109	< 0.050
Bromothiophene	< 0.050	< 0.050	< 0.050
Thiophenol	< 0.050	< 0.050	< 0.050
Diethyl Disulfide	< 0.050	< 0.050	< 0.050
Total Unidentified Sulfur	1.54	0.435	< 0.050
Total Reduced Sulfurs	47.2	10.1	< 0.050

Total Reduced Sulfur Compounds Analysis by ASTM D-5504

All unidentified compound's concentrations expressed in terms of H_2S (TRS does not include COS and SO₂) Sample Reporting Limit (SRL) is equal to Reporting Limit x Canister Dil. Fac. x Analysis Dil. Fac.

Quality Control/Quality Assurance Report **ASTM D-5504**

Date Analyzed:	12/9/2021
Analyst:	DL
Units:	ppbV

Instrument ID: SCD#10 Calb. Date: 12/8/2021

Opening Calibration Verification Standard 519.8 ppbV H2S (SS1289)

erste ppet mas (borres)	7			
H_2S	Resp. (area)	Result	% Rec *	% RPD ****
Initial	2963	520	100.0	0.5
Duplicate	3006	527	101.4	1.9
Triplicate	2880	505	97.2	2,4
527.0 ppbV H2S (SS1289)			
MeSH	Resp. (area)	Result	% Rec *	% RPD ****
Initial	3519	532	101.0	0.3
Duplicate	3542	536	101.7	1.0
Triplicate	3462	524	99.4	1.3
522.0 ppbV H2S (SS1289))			
DMS	Resp. (area)	Result	% Rec *	% RPD ****
Initial	3958	525	100.6	1.3
Duplicate	3887	516	98.8	0.5

514

Method Blank

Triplicate

Michiou Diank								
Analyte	Result							
H ₂ S	<pql< td=""></pql<>							
MeSH	<pql< td=""></pql<>							
DMS	<pql< td=""></pql<>							

3877

Duplicate Analysis

Duplicate Analysis			Sample ID	212124-25443
Analyte	Sample Result	Duplicate Result	Mean	% RPD ***
H ₂ S	<pql< td=""><td><pql< td=""><td>0.0</td><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td><td>0.0</td></pql<>	0.0	0.0
MeSH	<pql< td=""><td><pql< td=""><td>0.0</td><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td><td>0.0</td></pql<>	0.0	0.0
DMS	<pol< td=""><td><pol< td=""><td>0.0</td><td>0.0</td></pol<></td></pol<>	<pol< td=""><td>0.0</td><td>0.0</td></pol<>	0.0	0.0

Matrix Spike & D	uplicate		Sample ID	212124-25443	x10		
Analyte	Sample	Spike	MS	MSD	MS	MSD	% RPD ***
Analyte	Conc.	Added	Result	Result	% Rec **	% Rec **	70 KI D
H ₂ S	<pql< td=""><td>259.9</td><td>261.9</td><td>263.0</td><td>100.8</td><td>101.2</td><td>0.4</td></pql<>	259.9	261.9	263.0	100.8	101.2	0.4
MeSH	<pql< td=""><td>263.5</td><td>261.2</td><td>264.5</td><td>99.1</td><td>100.4</td><td>1.3</td></pql<>	263.5	261.2	264.5	99.1	100.4	1.3
DMS	<pql< td=""><td>261.0</td><td>265.1</td><td>264.9</td><td>101.6</td><td>101.5</td><td>0.1</td></pql<>	261.0	265.1	264.9	101.6	101.5	0.1

98.5

0.8

Closing Calibration Verification Standard

Analyte	Std. Conc.	Result	% Rec **
H ₂ S	519.8	500.2	96.2
MeSH	527.0	516.5	98.0
DMS	522.0	520.1	99.6

* Must be 95-105%, ** Must be 90-110%, *** Must be < 10%, **** Must be < 5% RPD from Mean result.

Has be yet in the formation of the forma

2225 Sperry Ave., Ventura, CA 93003

212309

CHAIN OF CUSTODY AND ANALYSIS REQUEST – Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields

Atmospheric Analysis and Consultin	ng · Phone: 80	5-650-1642	Email: info	Baselah asu			ompiete all r	elevant fields.		
Atmospheric Analysis and Consultin Client/Company Name	Project Nam	e	Email: mo	@aaciab.com	• 1534 Eas	tman Ave S	uite A, Venti	ura, CA 93003	AAC Project No	
Freestone Environmental Project Manager Name Kira Murray	DTG (Project Num				for for	Ana Q	Ilysis Reques	ted	Kiro Mur	(Name/Email/Address) Cizy in Castressone com
Turnaround Time	Sampler Na				17	$ 0\rangle$			1100 Jodwin	FUL, SUITE 250 und
□ Rush 24 h □ Same Day □ Rush 48 h □ 5 Days □ Rush 72 h)℃Normal		cy Malle	ren Talf	>	spenered su compands	VOCS+TI			Send Invoice To Kircomorray 100 Zadwin PO Number	Name/Email/Address) what Confractione con Aue Soite 250 Lichlord, WA
Client Sample Name	Sample ID	Sampling	Sampling	Container	12 g	ŏ			LAB	USE ONLY
Somple A-1		Date	Time	Type/Qty					Lab ID	Sample Received
	A-1 A-1 backup	1218 21	133Ce	Tedlaria	X	X	26290			FedEx
C The second	A2	128/21	1342	Tedler 1	Х	×	26291			☐UPS □Courier
Somple A-2 backup	A-2 backup	12/8/21	1355	Tedbo 1	X	X	26292			
Somple A-3		101010	1358	Tedla 1	×	X	26293			Temperature
V. J. DOLL	A-3	12/8/21	1425	Jedler 1	×	×	26294			°C
sample H3 backup	A-3 backy	12/8/21	1428	Tedlet 1	X	×	26295			Thermometer ID
	20.00								1	Initials
No1	Used M 12/8	21					175eg	8121		Returned Eqmt Total cans:
	10-					Not	(m 121			Unused cans:
Plight Notes (See 11)										Flow Controllers:
elient Notes/Special Instructions: Only run bac leak / pidblen wit	kup so h orgin	mpks Icl scmi	if tr ple	ure is	a	- -	EDD? □Yes ∭No	LAB USE ONLY Notes:		
Relinguished By	<u> </u>	Date	Received E							
Print: Tracy Mallonen Signature:		1218/21	Print:	•	1		Date			
Relinquished By		Time 1500			4_		Time			
Print:		Date	Received E Print:	$\sim \sqrt{2}$			Date 12/9/1			
Signature:		Time	Signature:	Chri	-1 A	log	Time 0722		2011년 1918년 1911년 1911년 중 416년 1911년	
						· · · · · · · · · · · · · · · · · · ·	111100120			

Ups

AIR SAMPLING REPORT DTG Recycling Group

APPENDIX D

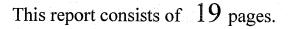
JANUARY AMBIENT AIR SAMPLING ANALYTICAL LABORATORY REPORT FOR EPA METHOD TO-15 – VOLATILE ORGANIC COMPOUNDS AND TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT: Freestone EnvironmentalPROJECT NAME: DTGAAC PROJECT NO.: 220168REPORT DATE: 1/31/2022

On January 26, 2022, Atmospheric Analysis & Consulting, Inc. received eight (8) Six-Liter Summa Canisters for Volatile Organic Compounds and TICs analysis by EPA Method TO-15. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab ID	Return Pressure (mmHga)
S-1 Vent	220168-27344	701.0
S-2 5' from vent	220168-27345	623.0
S-3 15' from vent	220168-27346	694.5
S-4 Upwind	220168-27347	558.5
S-5 Boundary	220168-27348	546.5
S-6 Boundary	220168-27349	745.5
S-7 Boundary	220168-27350	634.0
S-8 Boundary	220168-27351	542.0

This analysis is accredited under the laboratory's ISO/IEC 17025:2017 accreditation issued by the ANSI National Accreditation Board. Refer to certificate and scope of accreditation AT-1908. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.


I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. Methanol was biased low as reflected in the daily CCV report; however, a low level standard was run to confirm the visibility this compound. No other problems were encountered during receiving, preparation, and/or analysis of these samples.

The Technical Director or his designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

Imel Sucha Parmar, Ph.D

Technical Director

2225 Sperry Ave., Ventura, CA 93003

www.aaclab.com • (805) 650-1642

Laboratory Analysis Report

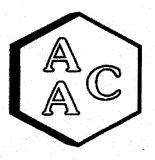
CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	·]	S-1 Vent	the second second	Gamala		S-2 5' from		Sample	1.1.1.1.1.1
AACID		220168-273	344	Sample		345	4 1. 1. T. T. L.	Method	
Date Sampled		01/21/202	2	Reporting	· · ·	01/21/202	2		Reporting
Date Analyzed		01/27/202	2	Limit		01/27/202	0.85 1.70 0.85	Limit	
Can Dilution Factor		1.48] (SRL) [1.70	- · · · · ·	(MRL)	
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF		
Chlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<>	U	1		0.50
Propene	23.6		1	1.48	18.0		1		1.00
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<>	U	1		0.50
Chloromethane	12.7	1.1.1.1.1.1.1.	1	0.74	10.1	1.	1		0.50
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<>	U	1		0.50
Vinyl Chloride	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<>	U	1		0.50
Methanol	<srl< td=""><td>U</td><td>1</td><td>7.41</td><td><srl< td=""><td>U</td><td>1</td><td></td><td>5.00</td></srl<></td></srl<>	U	1	7.41	<srl< td=""><td>U</td><td>1</td><td></td><td>5.00</td></srl<>	U	1		5.00
1,3-Butadiene	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<>	U	1		0.50
Bromomethane	<srl< td=""><td>• U •</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	• U •	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Chloroethane	<srl< td=""><td>U U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<></td></srl<>	U U	1	0.74	<srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<>	U	1		0.50
Dichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<>	U	1		0.50
Ethanol	<srl< td=""><td>U</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<></td></srl<>	U	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<>	U	1	3.40	2.00
Vinyl Bromide	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Acetone	3.64		1	2.96	3.76		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3.40	2.00
Trichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
2-Propanol (IPA)	<srl< td=""><td>U</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2,00</td></srl<></td></srl<>	U	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2,00</td></srl<>	U	1	3.40	2,00
Acrylonitrile	<srl< td=""><td>U .</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<></td></srl<>	U .	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<>	U	1	3.40	2.00
1,1-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td></td><td>0.50</td></srl<>	U	1		0.50
Methylene Chloride (DCM)	<srl< td=""><td>Ŭ</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
Allyl Chloride	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td></td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td></td><td>1.00</td></srl<>	U	1		1.00
Carbon Disulfide	<srl< td=""><td>Ŭ</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<></td></srl<>	Ŭ	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<>	U	1	3.40	2.00
Trichlorotrifluoroethane	<srl< td=""><td>U U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1 - 1 - 1 - 1 - 1 - 1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U U	1	0.74	<srl< td=""><td>U</td><td>1 - 1 - 1 - 1 - 1 - 1</td><td>0.85</td><td>0.50</td></srl<>	U	1 - 1 - 1 - 1 - 1 - 1	0.85	0.50
trans-1.2-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.1-Dichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<></td></srl<>	U	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<>	U	1	3.40	2.00
Vinvl Acetate	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
2-Butanone (MEK)	<srl< td=""><td>U U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
cis-1.2-Dichloroethene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Hexane	1.96		1	0.74	1.84	1	1	0.85	0.50
Chloroform	<srl< td=""><td>U</td><td></td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U		0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Ethyl Acetate	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Tetrahydrofuran	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.2-Dichloroethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.1.1-Trichloroethane	<srl< td=""><td>Ŭ</td><td>i</td><td>0.74</td><td><srl< td=""><td>Ū</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	i	0.74	<srl< td=""><td>Ū</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	Ū	1	0.85	0.50
Benzene	13.3		i	0.74	13.0	1	1	0.85	0.50

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC


VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID AAC ID		S-1 Vent 220168-273	27344 Sample 220168-27345					Sample	Method
Date Sampled		01/21/202		Reporting		01/21/202		Reporting	Reporting
Date Sumpted Date Analyzed		01/27/202		Limit		01/27/202		Limit	Limit
Can Dilution Factor		1.48	-	(SRL)	1.000	1.70	(SRL)	(MRL)	
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	
Carbon Tetrachloride	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Cvclohexane	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
1.2-Dichloropropane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Bromodichloromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.4-Dioxane	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
2.2.4-Trimethylpentane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Heptane	1.16		1	0.74	SRL SRL	U	1	0.85	0.50
cis-1.3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td></td><td>3.40</td><td>2.00</td></srl<></td></srl<>	U	1	2.96	<srl< td=""><td>U</td><td></td><td>3.40</td><td>2.00</td></srl<>	U		3.40	2.00
trans-1.3-Dichloropropene	<srl< td=""><td>U</td><td></td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U		1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
1.1.2-Trichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Toluene	4.49		1	0.74	3.98		1	0.85	0.50
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>1</td><td>7.41</td><td><srl< td=""><td>U</td><td>1</td><td>8.50</td><td>5.00</td></srl<></td></srl<>	U	1	7.41	<srl< td=""><td>U</td><td>1</td><td>8.50</td><td>5.00</td></srl<>	U	1	8.50	5.00
Dibromochloromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1,2-Dibromoethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Chlorobenzene	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Ethylbenzene	1.85	1. Sec. 1.	1	1.48	1.99	6 (1997) - 1997) 1997	1	1.70	1.00
m & p-Xylene	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
Bromoform	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Styrene	<srl< td=""><td>U</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2,00</td></srl<></td></srl<>	U	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2,00</td></srl<>	U	1	3.40	2,00
1.1.2.2-Tetrachloroethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
o-Xvlene	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
4-Ethyltoluene	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U.</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U.</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U.	1	1.70	1.00
1.3.5-Trimethylbenzene	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1,70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1,70</td><td>1.00</td></srl<>	U	1	1,70	1.00
1.2.4-Trimethylbenzene	<srl< td=""><td>Ū</td><td>1 1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	Ū	1 1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>Ū</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<></td></srl<>	Ū	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<>	U	1	3.40	2.00
1.3-Dichlorobenzene	<srl< td=""><td>Ū</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1,4-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.2-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.2.4-Trichlorobenzene	<srl< td=""><td>Ŭ · ·</td><td>1</td><td>7.41</td><td><srl< td=""><td>U</td><td>1</td><td>8,50</td><td>5.00</td></srl<></td></srl<>	Ŭ · ·	1	7.41	<srl< td=""><td>U</td><td>1</td><td>8,50</td><td>5.00</td></srl<>	U	1	8,50	5.00
Hexachlorobutadiene	<srl< td=""><td>Ŭ</td><td>i</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	i	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
BFB-Surrogate Std. % Recovery		90%				96%			70-130%

U - Compound was not detected at or above the SRL.

Page 3

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID		S-3 15' from	vent			S-4 Upwin	id	Committee	
AACID		220168-273		Sample		220168-273	847	Sample	Method
Date Sampled		01/21/202		Reporting		01/21/202	2	Reporting	Reporting
Date Analyzed		01/27/202		Limit		01/27/202	2	Limit	Limit
Can Dilution Factor		1.50		(SRL)		1.87	(SRL)	(MRL)	
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	
Chlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Propene	35.6	- 10 A.	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Chloromethane	17.7	1.1 Mar. 19	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Vinyl Chloride	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Methanol	28.8		1	7.51	<srl< td=""><td>U</td><td>1</td><td>9.36</td><td>5.00</td></srl<>	U	1	9.36	5.00
1,3-Butadiene	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Bromomethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Chloroethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Dichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Ethanol	7.46	14 A. 19	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
Vinyl Bromide	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Acetone	10.9	1997 - 19	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
Trichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
2-Propanol (IPA)	<srl< td=""><td>U</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	U	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
Acrylonitrile	<srl< td=""><td>U</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	U	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
1.1-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>··· 1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>··· 1</td><td>0.94</td><td>0.50</td></srl<>	U	··· 1	0.94	0.50
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>1</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	U	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Allyl Chloride	<srl< td=""><td>U</td><td>1</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	U	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Carbon Disulfide	<srl< td=""><td>U</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	U	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
1,1-Dichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U.</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	U.	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
Vinvl Acetate	<srl< td=""><td>U</td><td>1</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	U	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
2-Butanone (MEK)	1.95		1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
cis-1.2-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Hexane	4.02		1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Chloroform	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Ethyl Acetate	2.69		1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Tetrahydrofuran	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
1.2-Dichloroethane	<srl< td=""><td>Ŭ.</td><td></td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ.		0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
1,1,1-Trichloroethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.75</td><td><srl< td=""><td>Ū</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.75	<srl< td=""><td>Ū</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	Ū	1	0.94	0.50
Benzene	26.8		1	0.75	<srl< td=""><td>Ū</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	Ū	1	0.94	0.50

Page 4

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID AAC ID		S-3 15' from 220168-273		Sample		S-4 Upwin 220168-273		Sample	Method
Date Sampled		01/21/202		Reporting	1	01/21/202	2	Reporting	Reporting
Date Analyzed	01/27/2022			Limit 🗍		01/27/202	2	Limit	Limit
Can Dilution Factor		1.50		(SRL)		1.87	(SRL)	(MRL)	
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(MINL)
Carbon Tetrachloride	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Cyclohexane	<srl< td=""><td>Ŭ</td><td>1</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
1.2-Dichloropropane	<pre><srl< pre=""></srl<></pre>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Bromodichloromethane	<srl< td=""><td>Ū</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
1.4-Dioxane	<srl< td=""><td>U</td><td></td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	U		1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Trichloroethene (TCE)	<srl< td=""><td>Ŭ</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
2.2.4-Trimethylpentane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Heptane	3.05		1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
cis-1.3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1.</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1.</td><td>0.94</td><td>0.50</td></srl<>	U	1.	0.94	0.50
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	U	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
rans-1,3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	U	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
1,1,2-Trichloroethane	<srl< td=""><td>1 Ŭ</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	1 Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Foluene	23.8	The second second	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>i</td><td>7.51</td><td><srl< td=""><td>Ü</td><td>1</td><td>9.36</td><td>5.00</td></srl<></td></srl<>	U	i	7.51	<srl< td=""><td>Ü</td><td>1</td><td>9.36</td><td>5.00</td></srl<>	Ü	1	9.36	5.00
Dibromochloromethane	<pre>SRL</pre>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0,94</td><td>0.50</td></srl<>	U	1	0,94	0.50
1.2-Dibromoethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Tetrachloroethene (PCE)	<srl< td=""><td>Ŭ</td><td></td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ		0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Chlorobenzene	<srl< td=""><td>U U</td><td>t i i i i i i i i i i i i i i i i i i i</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U U	t i i i i i i i i i i i i i i i i i i i	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Ethylbenzene	5.82	<u> </u>	ti i	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
m & p-Xylene	1.91		1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Bromoform	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Styrene	<srl< td=""><td>Ŭ</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	Ŭ	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
1,1,2,2-Tetrachloroethane	<pre> <srl< pre=""></srl<></pre>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0,50</td></srl<>	U	1	0.94	0,50
p-Xvlene	<pre>SRL</pre>	U U	l i	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
4-Ethyltoluene	<srl< td=""><td>Ŭ</td><td>i</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	Ŭ	i	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
1.3.5-Trimethylbenzene	<pre> <srl< pre=""></srl<></pre>	Ŭ	i	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
1.2.4-Trimethylbenzene	<pre><srl< pre=""></srl<></pre>	U U	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Benzyl Chloride (a-Chlorotoluene)	<pre><srl< pre=""></srl<></pre>	U U	<u>i</u>	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
1.3-Dichlorobenzene	<pre><srl< pre=""></srl<></pre>	U U	1 i i	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
I.4-Dichlorobenzene	- SRL	U U	i i	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
1.2-Dichlorobenzene	- SRL	U U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
2.4-Trichlorobenzene	<pre><srl< pre=""></srl<></pre>	U	1	7.51	<srl< td=""><td>U U</td><td>1</td><td>9.36</td><td>5.00</td></srl<>	U U	1	9.36	5.00
Hexachlorobutadiene	<pre><srl< pre=""></srl<></pre>	1 U	1	0.75	<srl< td=""><td>Ŭ</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	Ŭ	1	0.94	0.50
BFB-Surrogate Std. % Recovery	- DIL	99%				94%	1		70-130%

U - Compound was not detected at or above the SRL.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	1	S-5 Bounda	ary	Sample		S-6 Bounda		Sample	
AAC ID		220168-273	348			220168-273			Method
Date Sampled		01/21/202	2	Reporting		01/21/202		Reporting	Reporting
Date Analyzed		01/27/202	2	Limit		01/27/202	2	Limit	Limit
Can Dilution Factor		1.92] (SRL) [1.40	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	(SRL)	(MRL)
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	
Chlorodifluoromethane	<srl< td=""><td>U</td><td></td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U		0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Propene	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Chloromethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Vinyl Chloride	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Methanol	<srl< td=""><td>U</td><td>1</td><td>9.62</td><td><srl< td=""><td>U</td><td>1</td><td>6.98</td><td>5.00</td></srl<></td></srl<>	U	1	9.62	<srl< td=""><td>U</td><td>1</td><td>6.98</td><td>5.00</td></srl<>	U	1	6.98	5.00
1.3-Butadiene	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1 1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1 1</td><td>0.70</td><td>0.50</td></srl<>	U	1 1	0.70	0.50
Bromomethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<>	U	1	0,70	0.50
Chloroethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Dichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Ethanol	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
Vinyl Bromide	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Acetone	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td>3.57</td><td>1.1</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	3.85	3.57	1.1	1	2.79	2.00
Trichlorofluoromethane	<srl< td=""><td>Ū</td><td>1.1.1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<></td></srl<>	Ū	1.1.1	0.96	<srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<>	U	1	0,70	0.50
2-Propanol (IPA)	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
Acrylonitrile	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
1.1-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Allyl Chloride	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Carbon Disulfide	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
Trichlorotrifluoroethane	<srl< td=""><td>Ū</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
trans-1.2-Dichloroethene	<srl< td=""><td>Ū</td><td></td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū		0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
1.1-Dichloroethane	<srl< td=""><td>Ŭ</td><td></td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<></td></srl<>	Ŭ		0.96	<srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<>	U	1	0,70	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
Vinvl Acetate	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1,40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1,40</td><td>1.00</td></srl<>	U	1	1,40	1.00
2-Butanone (MEK)	<srl< td=""><td>Ŭ</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
cis-1.2-Dichloroethene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Hexane	<srl< td=""><td>Ŭ</td><td>1 1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1 1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Chloroform	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Ethyl Acetate	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Tetrahydrofuran	<srl< td=""><td>Ŭ</td><td>i i</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0,50</td></srl<></td></srl<>	Ŭ	i i	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0,50</td></srl<>	U	1	0.70	0,50
1.2-Dichloroethane	<srl< td=""><td>Ŭ</td><td>i i</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	i i	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
1.1.1-Trichloroethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>Ū</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>Ū</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	Ū	1	0.70	0.50
Benzene	<srl< td=""><td>U</td><td>1 1</td><td>0.96</td><td><srl< td=""><td>Ū</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1 1	0.96	<srl< td=""><td>Ū</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	Ū	1	0.70	0.50

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID		S-5 Bounda		Sample		S-6 Bounda		Sample	Method
AAC ID	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	220168-273		Reporting		220168-273		Reporting	
Date Sampled		01/21/202			·	01/21/202		Limit	Reporting
Date Analyzed		01/27/202	2	Limit		01/27/202	2		Limit
Can Dilution Factor		1.92		(SRL)		1.40		(SRL)	(MRL)
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	
Carbon Tetrachloride	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Cyclohexane	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
1.2-Dichloropropane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Bromodichloromethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U U</td><td>1</td><td>0.70</td><td>0,50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U U</td><td>1</td><td>0.70</td><td>0,50</td></srl<>	U U	1	0.70	0,50
1.4-Dioxane	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
2.2.4-Trimethylpentane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Heptane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
cis-1.3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
trans-1.3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
1.1.2-Trichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Toluene	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
2-Hexanone (MBK)	<srl< td=""><td>Ū</td><td>1</td><td>9.62</td><td><srl< td=""><td>U</td><td>1</td><td>6.98</td><td>5.00</td></srl<></td></srl<>	Ū	1	9.62	<srl< td=""><td>U</td><td>1</td><td>6.98</td><td>5.00</td></srl<>	U	1	6.98	5.00
Dibromochloromethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
1.2-Dibromoethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Tetrachloroethene (PCE)	<srl< td=""><td>Ū</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Chlorobenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Ethylbenzene	<srl< td=""><td>Ū</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ū	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
m & p-Xylene	<srl< td=""><td>Ū.</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ū.	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Bromoform	<srl< td=""><td>Ū.</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū.	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Stvrene	<srl< td=""><td>Ü</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	Ü	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
1.1.2.2-Tetrachloroethane	<srl< td=""><td>Ū</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
o-Xvlene	<srl< td=""><td>Ũ</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ũ	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
4-Ethyltoluene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
1.3.5-Trimethylbenzene	<srl< td=""><td>Ŭ</td><td></td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ŭ		1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
1.2.4-Trimethylbenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>Ŭ.</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	Ŭ.	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
1.3-Dichlorobenzene	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U ·</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U ·</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U ·	1	0.70	0.50
1.4-Dichlorobenzene	<srl< td=""><td>U U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
1.2-Dichlorobenzene	<srl< td=""><td>Ū</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
1.2.4-Trichlorobenzene	<srl< td=""><td>U U</td><td>1</td><td>9.62</td><td><srl< td=""><td>Ü</td><td>1</td><td>6.98</td><td>5,00</td></srl<></td></srl<>	U U	1	9.62	<srl< td=""><td>Ü</td><td>1</td><td>6.98</td><td>5,00</td></srl<>	Ü	1	6.98	5,00
Hexachlorobutadiene	<srl< td=""><td>t ü</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	t ü	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
BFB-Surrogate Std. % Recovery		94%				89%			70-130%

U - Compound was not detected at or above the SRL.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID		S-7 Bounda	ary	Sample		S-8 Bounda		Sample	
AACID		220168-273	50		1.1	220168-273			Method
Date Sampled		01/21/202	2	Reporting		01/21/202		Reporting	Reporting
Date Analyzed		01/27/202	2	Limit 🗍		01/27/202	2	Limit	Limit
Can Dilution Factor	a de trans	1.61] (SRL) [1.91	1	(SRL)	(MRL)
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	
Chlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Propene	<srl< td=""><td>U</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	U	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>1.</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1.	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Chloromethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Vinyl Chloride	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Methanol	9.46		1	8.06	<srl< td=""><td>U</td><td>1</td><td>9.54</td><td>5.00</td></srl<>	U	1	9.54	5.00
1.3-Butadiene	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Bromomethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1.00</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.81	<srl< td=""><td>U</td><td>1.00</td><td>0.95</td><td>0.50</td></srl<>	U	1.00	0.95	0.50
Chloroethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Dichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Ethanol	<srl< td=""><td>Ŭ</td><td>1</td><td>3.22</td><td><srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<></td></srl<>	Ŭ	1	3.22	<srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U	1	3.82	2.00
Vinyl Bromide	<pre> <srl< pre=""></srl<></pre>	U U	1	0.81	<srl< td=""><td>Ŭ</td><td></td><td>0.95</td><td>0.50</td></srl<>	Ŭ		0.95	0.50
	<pre><srl< pre=""></srl<></pre>	t ŭ	1	3.22	<srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U	1	3.82	2.00
Acetone Trichlorofluoromethane	<srl <srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<></srl 	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
2-Propanol (IPA)	<pre> <srl< pre=""></srl<></pre>	U U	1	3.22	<srl< td=""><td>Ŭ</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	Ŭ	1	3.82	2.00
	<srl SRL</srl 	U U	1	3.22	<srl< td=""><td>U U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U U	1	3.82	2.00
Acrylonitrile	<pre><srl <srl< pre=""></srl<></srl </pre>	U	1	0.81	<srl< td=""><td>U U</td><td>1 î</td><td>0.95</td><td>0.50</td></srl<>	U U	1 î	0.95	0.50
1.1-Dichloroethene	<pre> <srl <srl< pre=""></srl<></srl </pre>	U		1.61	<srl< td=""><td>Ŭ</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	Ŭ	1	1.91	1.00
Methylene Chloride (DCM)		U		1.61	<srl< td=""><td>U U</td><td></td><td>1.91</td><td>1.00</td></srl<>	U U		1.91	1.00
Allyl Chloride	< <u>SRL</u>	U U	<u> </u>	3.22	<srl< td=""><td>U U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U U	1	3.82	2.00
Carbon Disulfide	<srl< td=""><td></td><td>1</td><td>0.81</td><td><srl< td=""><td>U U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>		1	0.81	<srl< td=""><td>U U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U U	1	0.95	0.50
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td></td><td>0.81</td><td>-SRL</td><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U		0.81	-SRL	U	1	0.95	0.50
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td></td><td>0.81</td><td><pre><srl< pre=""></srl<></pre></td><td>1 U</td><td>1 1</td><td>0.95</td><td>0.50</td></srl<>	U		0.81	<pre><srl< pre=""></srl<></pre>	1 U	1 1	0.95	0.50
1,1-Dichloroethane	<srl< td=""><td>U</td><td></td><td>3.22</td><td><srl <srl< td=""><td>U</td><td></td><td>3.82</td><td>2.00</td></srl<></srl </td></srl<>	U		3.22	<srl <srl< td=""><td>U</td><td></td><td>3.82</td><td>2.00</td></srl<></srl 	U		3.82	2.00
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td></td><td></td><td><srl <srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></srl </td></srl<>	U			<srl <srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></srl 	U	1	1.91	1.00
Vinyl Acetate	<srl< td=""><td>U</td><td></td><td>1.61</td><td></td><td>U</td><td></td><td>1.91</td><td>1.00</td></srl<>	U		1.61		U		1.91	1.00
2-Butanone (MEK)	<srl< td=""><td>U</td><td></td><td>1.61</td><td><srl< td=""><td></td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U		1.61	<srl< td=""><td></td><td>1</td><td>0.95</td><td>0.50</td></srl<>		1	0.95	0.50
cis-1,2-Dichloroethene	<srl< td=""><td>U</td><td></td><td>0.81</td><td><srl< td=""><td>UU</td><td></td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U		0.81	<srl< td=""><td>UU</td><td></td><td>0.95</td><td>0.50</td></srl<>	UU		0.95	0.50
Hexane	<srl< td=""><td>U</td><td></td><td>0.81</td><td><srl< td=""><td></td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U		0.81	<srl< td=""><td></td><td>1</td><td>0.95</td><td>0.50</td></srl<>		1	0.95	0.50
Chloroform	<srl< td=""><td>U</td><td></td><td>0.81</td><td><<u>SRL</u></td><td>U</td><td></td><td></td><td>0.50</td></srl<>	U		0.81	< <u>SRL</u>	U			0.50
Ethyl Acetate	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td> </td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td> </td><td>0.95</td><td>0.50</td></srl<>	U		0.95	0.50
Tetrahydrofuran	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td><u> </u></td><td>0.95</td><td></td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td><u> </u></td><td>0.95</td><td></td></srl<>	U	<u> </u>	0.95	
1,2-Dichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td><u> </u></td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td><u> </u></td><td>0.95</td><td>0.50</td></srl<>	U	<u> </u>	0.95	0.50
1,1,1-Trichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td></td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td></td><td>0.95</td><td>0.50</td></srl<>	U		0.95	0.50
Benzene	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1 1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1 1</td><td>0.95</td><td>0.50</td></srl<>	U	1 1	0.95	0.50

Laboratory Analysis Report


CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID AAC ID	S-7 Boundary Sample S-8 Boundary 220168-27350 Dataseting 220168-27351				220168-27350 Sample 220168-27351				Method	
Date Sampled		01/21/202						Reporting	Reporting	
Date Analyzed	01/27/2022			Limit	1. Sec. 4. Sec.	01/27/202	Limit	Limit		
Can Dilution Factor		1.61		(SRL)		1.91		(SRL)	(MRL)	
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(······)	
Carbon Tetrachloride	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
Cyclohexane	<srl< td=""><td>U</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	U	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00	
1.2-Dichloropropane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
Bromodichloromethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
1.4-Dioxane	<srl< td=""><td>U</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	U	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00	
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
2.2.4-Trimethylpentane	<srl< td=""><td>U</td><td> 1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
Heptane	<srl< td=""><td>Ū</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
cis-1.3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>1</td><td>3.22</td><td><srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<></td></srl<>	U	1	3.22	<srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U	1	3.82	2.00	
trans-1.3-Dichloropropene	<srl< td=""><td>Ŭ</td><td>1.101</td><td>1.61</td><td><srl< td=""><td>U</td><td>1.1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	Ŭ	1.101	1.61	<srl< td=""><td>U</td><td>1.1</td><td>1.91</td><td>1.00</td></srl<>	U	1.1	1.91	1.00	
1,1,2-Trichloroethane	<srl< td=""><td>Ū.</td><td>1.00</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ū.	1.00	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
Foluene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1.00</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.81	<srl< td=""><td>U</td><td>1.00</td><td>0.95</td><td>0.50</td></srl<>	U	1.00	0.95	0.50	
2-Hexanone (MBK)	<srl< td=""><td>Ŭ</td><td>1</td><td>8.06</td><td><srl< td=""><td>U</td><td>1</td><td>9.54</td><td>5.00</td></srl<></td></srl<>	Ŭ	1	8.06	<srl< td=""><td>U</td><td>1</td><td>9.54</td><td>5.00</td></srl<>	U	1	9.54	5.00	
Dibromochloromethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
1.2-Dibromoethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
Tetrachloroethene (PCE)	<srl< td=""><td>Ū</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
Chlorobenzene	<srl< td=""><td>Ŭ</td><td>Í</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	Í	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
Ethylbenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00	
m & p-Xylene	<srl< td=""><td>Ū</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	Ū	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00	
Bromoform	<srl< td=""><td>Ū</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
Styrene	<srl< td=""><td>Ū</td><td>1</td><td>3.22</td><td><srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<></td></srl<>	Ū	1	3.22	<srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U	1	3.82	2.00	
1.1.2.2-Tetrachloroethane	<srl< td=""><td>U I</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U I	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
p-Xylene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1,91</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1,91</td><td>1.00</td></srl<>	U	1	1,91	1.00	
4-Ethyltoluene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1,00</td></srl<></td></srl<>	Ŭ	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1,00</td></srl<>	U	1	1.91	1,00	
1.3.5-Trimethylbenzene	<srl< td=""><td>U</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	U	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00	
1.2.4-Trimethylbenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00	
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>Ū</td><td>1</td><td>3.22</td><td><srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<></td></srl<>	Ū	1	3.22	<srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U	1	3.82	2.00	
1,3-Dichlorobenzene	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
1.4-Dichlorobenzene	<srl< td=""><td>U</td><td>1 1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0,50</td></srl<></td></srl<>	U	1 1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0,50</td></srl<>	U	1	0.95	0,50	
1.2-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>1 1</td><td>0.81</td><td><srl< td=""><td>Ū</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	1 1	0.81	<srl< td=""><td>Ū</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	Ū	1	0.95	0.50	
1.2.4-Trichlorobenzene	<srl< td=""><td>Ū</td><td>i i</td><td>8.06</td><td><srl< td=""><td>U</td><td>1</td><td>9.54</td><td>5.00</td></srl<></td></srl<>	Ū	i i	8.06	<srl< td=""><td>U</td><td>1</td><td>9.54</td><td>5.00</td></srl<>	U	1	9.54	5.00	
Hexachlorobutadiene	<srl <<="" td=""><td>1 Ŭ</td><td>1 1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl>	1 Ŭ	1 1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50	
BFB-Surrogate Std. % Recovery	1 2412	99%	1			93%			70-130%	

U - Compound was not detected at or above the SRL.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v)

DATE RECEIVED : 01/26/2022 **DATE REPORTED : 01/31/2022** ANALYST : MB/RC


TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

Client ID		S-1 Vent	
AACID		220168-27344	
Date Sampled	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	01/21/2022	and the second second
Date Analyzed		01/27/2022	
Can Dilution Factor		1.48	
Compound	Result*	Analysis DF	ID Quality [§]
2-Methyl-1-propene	4.86	1	74
Butane	3.54	1	42
2-Methylbutane	4.65	1	64
BFB-Surrogate Std. % Recovery	90%		

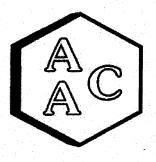
Client ID		S-2 5' from vent	
AAC ID		220168-27345	
Date Sampled	Aller and the second	01/21/2022	Marine Branch
Date Analyzed	and the second second	01/27/2022	and the second
Can Dilution Factor		1.70	and the second secon
Compound	Result*	Analysis DF	ID Quality [§]
2-Methyl-1-propene	4.88	1	81
Butane	3.86	1	53
2-Butene	1.87	1	72
Pentane	3.96	1	47
2-Methyl-2-butene	1.89	1	59
BFB-Surrogate Std. % Recovery	96%		

* Results obtained via TICs analysis are estimated. § Spectral Library match quality ranges from 1-100.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO: 220168 MATRIX : AIR UNITS : PPB (v/v)

DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC


TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

Client ID		S-3 15' from vent	
AAC ID		220168-27346	
Date Sampled		01/21/2022	
Date Analyzed		01/27/2022	
Can Dilution Factor		1.50	
Compound	Result*	Analysis DF	ID Quality [§]
2-Methyl-1-propene	7.37	1	86
Butane	6.81	1	58
Pentane	9.07	1	72
2-Methyl-2-butene	3.12	1	83
2-Methylfuran	2.51	an an an <mark>1</mark> 946 a' far	90
Octane	1.73	1	64
Hexamethylcyclotrisiloxane	5.04	1	64
2,2,6-Trimethyloctane	4.07	1	64
Decane	1.70	1	72
1-Methyl-4-(1-methylethyl)-benzene	8.02	1	97
FB-Surrogate Std. % Recovery	99%		

Client ID		S-4 Upwind	
AACID		220168-27347	
Date Sampled	1. S.	01/21/2022	
Date Analyzed		01/27/2022	
Can Dilution Factor		1.87	and the second
Compound	Result*	Analysis DF	ID Quality [§]
No Library	Search Compound	s Detected	منتوع بحري كالتجميعين
BFB-Surrogate Std. % Recovery	94%		

* Results obtained via TICs analysis are estimated. § Spectral Library match quality ranges from 1-100.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

	S-5 Boundary	
	220168-27348	
	01/21/2022	and an end of the
	01/27/2022	
	1.92	
Result*	Analysis DF	ID Quality [§]
4.37	1	64
94%		
A STATE OF A STATE OF A STATE	01/21/2022	
and the second	01/41/2042	
	01/27/2022	
Result*	01/27/2022	ID Quality [§]
Result*	01/27/2022 1.40	ID Quality [§] 9
	4.37	220168-27348 01/21/2022 01/27/2022 1.92 Result* Analysis DF 4.37 94% S-6 Boundary 220168-27348

§ Spectral Library match quality ranges from 1-100.

Spectral Elorary match quanty ranges from 1 100

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO: 220168 MATRIX : AIR UNITS : PPB (v/v)

DATE RECEIVED : 01/26/2022 **DATE REPORTED : 01/31/2022** ANALYST : MB/RC

TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

	and the second	and a second	
Client ID		S-7 Boundary	
AAC ID	and the second second	220168-27350	
Date Sampled		01/21/2022	
Date Analyzed		01/27/2022	
Can Dilution Factor		1.61	
Compound	Result*	Analysis DF	ID Quality [§]
No Library S	earch Compounds	Detected	
3FB-Surrogate Std. % Recovery	99%		
Client ID		S-8 Boundary	
AAC ID		220168-27351	
Date Sampled		01/21/2022	
Date Analyzed		01/27/2022	
Can Dilution Factor		1.91	in a start and
Compound	Result*	Analysis DF	ID Quality [§]
No Library S	earch Compounds	Detected	
3FB-Surrogate Std. % Recovery	93%		

* Results obtained via TICs analysis are estimated. § Spectral Library match quality ranges from 1-100.

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 01/27/2022 MATRIX : High Purity N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : MS1-010522-01 ANALYST : RC

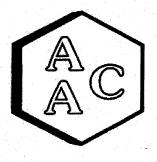
VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Continuing Calibration Verification of the 01/07/2022 Calibration

Analyte Compounds	Source ¹	CCV ²	% Recovery ³	Analyte Compounds (Continued)	Source ¹	CCV ²	% Recovery ³
4-BFB (surrogate standard)	10.00	10.17	102	1,2-Dichloropropane	10.50	9.41	90
Chlorodifluoromethane	10.50	10.00	95	Bromodichloromethane	10.40	9.81	94
Propene	10.60	9.19	87	1,4-Dioxane	10.40	11.22	108
Dichlorodifluoromethane	10.40	9.14	88	Trichloroethene (TCE)	10.40	11.53	111
Dimethyl Ether	10.80	8.54	79	2,2,4-Trimethylpentane	10.40	11.15	107
Chloromethane	10.40	7.51	72	Methyl Methacrylate	11.00	9.63	88
Dichlorotetrafluoroethane	10.30	8.99	87	Heptane	10.50	11.17	106
Vinyl Chloride	10.50	8.48	81	cis-1,3-Dichloropropene	10.40	10.85	104
Acetaldehyde	22.50	17.99	80	4-Methyl-2-pentanone (MiBK)	10.40	9.62	93
Methanol LR	20.10	12.17	61	trans-1,3-Dichloropropene	10.50	9.17	87
1.3-Butadiene	10.60	8.53	80	1,1,2-Trichloroethane	10.50	10.72	102
Bromomethane	10.40	8.04	.77	Toluene	10.60	11.88	112
Chloroethane	10.30	7.70	75	2-Hexanone (MBK)	10.50	8.77	84
Dichlorofluoromethane	10.50	8.19	78	Dibromochloromethane	10.30	10.53	102
Ethanol	11.20	8,10	72	1,2-Dibromoethane	10.60	10.59	100
Vinyl Bromide	10.50	8.42	80	Tetrachloroethene (PCE)	10.40	11.05	106
Acrolein LR	11.10	7.53	68	Chlorobenzene	10.60	10.92	103
Acetone	10.60	7.82	74	Ethylbenzene	10.50	11.43	109
Trichlorofluoromethane	10.50	7.87	75	m & p-Xylene	21.00	22.27	106
2-Propanol (IPA)	11.00	8.02	73	Bromoform	10.50	10.61	101
Acrylonitrile	11.40	8.49	74	Styrene	10.50	10.38	99
1.1-Dichloroethene	10.40	8.56	82	1,1,2,2-Tetrachloroethane	10.50	10,80	103
Methylene Chloride (DCM)	10.50	8.40	80	o-Xylene	10.50	10.90	104
TertButanol (TBA)	11.30	8.23	73	1,2,3-Trichloropropane	10.40	10.72	103
Allyl Chloride	10.40	8.41	81	Isopropylbenzene (Cumene)	10.40	11.69	112
Carbon Disulfide	10.50	7.88	75	α-Pinene	11.40	10.14	89
Trichlorotrifluoroethane	10.40	8.21	79	2-Chlorotoluene	10.40	11.86	114
trans-1.2-Dichloroethene	10,60	10.97	103	n-Propylbenzene	10.50	12.09	115
1.1-Dichloroethane	10.50	9.81	93	4-Ethyltoluene	10.30	10.79	105
Methyl Tert Butyl Ether (MTBE)	10,50	8.53	81	1,3,5-Trimethylbenzene	10.30	10.47	102
Vinyl Acetate	11.00	9.86	90	β-Pinene	11.30	8.00	71
2-Butanone (MEK)	10.60	9.27	87	1,2,4-Trimethylbenzene	10.30	10.53	102
cis-1,2-Dichloroethene	10.50	10,54	100	Benzyl Chloride (a-Chlorotoluene)	10.40	9.34	90
Hexane	10,70	10.20	95	1,3-Dichlorobenzene	10.40	11.57	111
Chloroform	10.60	10.23	97	1,4-Dichlorobenzene	10.30	12.09	117
Ethyl Acetate	10.60	9.92	94	Sec-ButylBenzene	10.40	10.96	105
Tetrahydrofuran	10.00	8.90	87	1,2-Dichlorobenzene	10.60	12.49	118
1.2-Dichloroethane	10.50	9.91	94	n-ButylBenzene	10.40	10.07	97
1.1.1-Trichloroethane	10.30	9.98	96	1,2-Dibromo-3-Chloropropane	10.40	10.54	101
Benzene	10.60	10,70	101	1,2,4-Trichlorobenzene	11.00	9.29	84
Carbon Tetrachloride	10.00	10.70	101	Naphthalene	11.50	9.95	87
Cyclohexane	10.20	10.94	105	Hexachlorobutadiene	11.00	11.36	103

¹Concentration of analyte compound in certified source standard.

² Measured result from daily Continuing Calibration Verification (CCV).


³ The acceptable range for analyte recovery is $100\pm30\%$.

LR - Recovery for this compound was low. Results should be considered estimated.

Page 14

www.aaclab.com • (805) 650-1642

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 01/27/2022MATRIX : High Purity N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : MS1-010522-01 ANALYST : RC

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

System Monitoring Compounds	Sample Concentration	Spike Added	LCS ¹ Recovery	LCSD ¹ Recovery	LCS ¹ % Recovery ²	LCSD ¹ % Recovery ²	RPD ³
4-BFB (surrogate standard)	0.0	10.00	10.17	10.65	101.7	106.5	4.6
1,1-Dichloroethene	0.0	10.40	8.56	7.98	82	77	7.0
Methylene Chloride (DCM)	0.0	10.50	8.40	8.25	80	79	1.8
Benzene	0.0	10.60	10.70	10.56	101	100	1.3
Trichloroethene (TCE)	0.0	10.40	11.53	10.49	111	101	9.4
Toluene	0.0	10.60	11.88	11.69	112	110	1.6
Tetrachloroethene (PCE)	0.0	10.40	11.05	10.52	106	101	4.9
Chlorobenzene	0.0	10.60	10.92	10.67	103	101	2.3
Ethylbenzene	0.0	10.50	11.43	10.95	109	104	4.3
m & p-Xylene	0.0	21.00	22.27	22.69	106	108	1.9
o-Xylene	0.0	10.50	10.90	10.50	104	100	3.7

Laboratory Control Spike Analysis

¹Laboratory Control Spike (LCS) / Laboratory Control Spike Duplicate (LCSD)

² The acceptable range for analyte recovery is $100\pm30\%$.

³ Relative Percent Difference (RPD) between LCS recovery and LCSD recovery (acceptable range is <25%).

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 01/27/2022 MATRIX : High Purity He or N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 ANALYST : RC

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Method Blank Analysis

Analyte Compounds	Analyte Compounds MB 012722 Reporting Limit (RL) Analyte Compounds (Continued)		MB 012722	Reporting Limit (RL)	
4-BFB (surrogate standard)	93%	100±30%	1,2-Dichloropropane	<rl< td=""><td>0.5</td></rl<>	0.5
Chlorodifluoromethane	<rl< td=""><td>0.5</td><td>Bromodichloromethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Bromodichloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Propene	<rl< td=""><td>1.0</td><td>1,4-Dioxane</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	1.0	1,4-Dioxane	<rl< td=""><td>1.0</td></rl<>	1.0
Dichlorodifluoromethane	<rl< td=""><td>0.5</td><td>Trichloroethene (TCE)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Trichloroethene (TCE)	<rl< td=""><td>0.5</td></rl<>	0.5
Dimethyl Ether	<rl< td=""><td>0.5</td><td>2,2,4-Trimethylpentane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	2,2,4-Trimethylpentane	<rl< td=""><td>0.5</td></rl<>	0.5
Chloromethane	<rl< td=""><td>0.5</td><td>Methyl Methacrylate</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	0.5	Methyl Methacrylate	<rl< td=""><td>2.0</td></rl<>	2.0
Dichlorotetrafluoroethane	<rl< td=""><td>0.5</td><td>Heptane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Heptane	<rl< td=""><td>0.5</td></rl<>	0.5
Vinyl Chloride	<rl< td=""><td>0.5</td><td>cis-1,3-Dichloropropene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	cis-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5
Acetaldehyde	<rl< td=""><td>5.0</td><td>4-Methyl-2-pentanone (MiBK)</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	5.0	4-Methyl-2-pentanone (MiBK)	<rl< td=""><td>2.0</td></rl<>	2.0
Methanol	<rl< td=""><td>5.0</td><td>trans-1,3-Dichloropropene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	5.0	trans-1,3-Dichloropropene	<rl< td=""><td>1.0</td></rl<>	1.0
3-Butadiene	<rl< td=""><td>0.5</td><td>1,1,2-Trichloroethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,1,2-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Bromomethane	<rl< td=""><td>0.5</td><td>Toluene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Toluene	<rl< td=""><td>0.5</td></rl<>	0.5
Chloroethane	<rl< td=""><td>0.5</td><td>2-Hexanone (MBK)</td><td><rl< td=""><td>5.0</td></rl<></td></rl<>	0.5	2-Hexanone (MBK)	<rl< td=""><td>5.0</td></rl<>	5.0
Dichlorofluoromethane	<rl< td=""><td>0.5</td><td>Dibromochloromethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Dibromochloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Ethanol	<rl< td=""><td>2.0</td><td>1,2-Dibromoethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	1,2-Dibromoethane	<rl< td=""><td>0.5</td></rl<>	0.5
Vinyl Bromide	<rl< td=""><td>0.5</td><td>Tetrachloroethene (PCE)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Tetrachloroethene (PCE)	<rl< td=""><td>0.5</td></rl<>	0.5
Acrolein	<rl< td=""><td>1.0</td><td>Chlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	Chlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Acetone	<rl< td=""><td>2.0</td><td>Ethylbenzene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	2.0	Ethylbenzene	<rl< td=""><td>1.0</td></rl<>	1.0
Trichlorofluoromethane	<rl< td=""><td>0.5</td><td>m & p-Xylene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	m & p-Xylene	<rl< td=""><td>1.0</td></rl<>	1.0
2-Propanol (IPA)	<rl< td=""><td>2.0</td><td>Bromoform</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	Bromoform	<rl< td=""><td>0.5</td></rl<>	0.5
Acrylonitrile	<rl< td=""><td>2.0</td><td>Styrene</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	2.0	Styrene	<rl< td=""><td>2.0</td></rl<>	2.0
1.1-Dichloroethene	<rl< td=""><td>0.5</td><td>1,1,2,2-Tetrachloroethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,1,2,2-Tetrachloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Methylene Chloride (DCM)	<rl< td=""><td>1.0</td><td>o-Xylene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	1.0	o-Xylene	<rl< td=""><td>1.0</td></rl<>	1.0
TertButanol (TBA)	<rl< td=""><td>0.5</td><td>1,2,3-Trichloropropane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,2,3-Trichloropropane	<rl< td=""><td>0.5</td></rl<>	0.5
Allyl Chloride	<rl< td=""><td>1.0</td><td>Isopropylbenzene (Cumene)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	Isopropylbenzene (Cumene)	<rl< td=""><td>0.5</td></rl<>	0.5
Carbon Disulfide	<rl< td=""><td>2.0</td><td>α-Pinene</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	2.0	α-Pinene	<rl< td=""><td>2.0</td></rl<>	2.0
Trichlorotrifluoroethane	<rl< td=""><td>0.5</td><td>2-Chlorotoluene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	2-Chlorotoluene	<rl< td=""><td>0.5</td></rl<>	0.5
trans-1,2-Dichloroethene	<rl< td=""><td>0.5</td><td>n-Propylbenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	n-Propylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1.1-Dichloroethane	<rl< td=""><td>0.5</td><td>4-Ethyltoluene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	4-Ethyltoluene	<rl< td=""><td>1.0</td></rl<>	1.0
Methyl Tert Butyl Ether (MTBE)	<rl< td=""><td>2.0</td><td>1,3,5-Trimethylbenzene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	2.0	1,3,5-Trimethylbenzene	<rl< td=""><td>1.0</td></rl<>	1.0
Vinyl Acetate	<rl< td=""><td>1.0</td><td>β-Pinene</td><td><rl< td=""><td>5.0</td></rl<></td></rl<>	1.0	β-Pinene	<rl< td=""><td>5.0</td></rl<>	5.0
2-Butanone (MEK)	<rl< td=""><td>1.0</td><td>1,2,4-Trimethylbenzene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	1.0	1,2,4-Trimethylbenzene	<rl< td=""><td>1.0</td></rl<>	1.0
cis-1,2-Dichloroethene	<rl< td=""><td>0.5</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	0.5	Benzyl Chloride (a-Chlorotoluene)	<rl< td=""><td>2.0</td></rl<>	2.0
Hexane	<rl< td=""><td>0.5</td><td>1,3-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,3-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Chloroform	<rl< td=""><td>0.5</td><td>1,4-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,4-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Ethyl Acetate	<rl< td=""><td>0.5</td><td>Sec-ButylBenzene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	Sec-ButylBenzene	<rl< td=""><td>1.0</td></rl<>	1.0
Tetrahydrofuran	<rl< td=""><td>0.5</td><td>1,2-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,2-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1.2-Dichloroethane	<rl< td=""><td>0.5</td><td>n-ButylBenzene</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	0.5	n-ButylBenzene	<rl< td=""><td>2.0</td></rl<>	2.0
1.1.1-Trichloroethane	<rl< td=""><td>0.5</td><td>1,2-Dibromo-3-Chloropropane</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	1,2-Dibromo-3-Chloropropane	<rl< td=""><td>1.0</td></rl<>	1.0
Benzene	< <u>RL</u>	0.5	1,2,4-Trichlorobenzene	<rl< td=""><td>5.0</td></rl<>	5.0
Carbon Tetrachloride	<rl< td=""><td>0.5</td><td>Naphthalene</td><td><rl< td=""><td>5.0</td></rl<></td></rl<>	0.5	Naphthalene	<rl< td=""><td>5.0</td></rl<>	5.0
Cyclohexane	<rl <<="" td=""><td>1.0</td><td>Hexachlorobutadiene</td><td><rl< td=""><td>0.5</td></rl<></td></rl>	1.0	Hexachlorobutadiene	<rl< td=""><td>0.5</td></rl<>	0.5

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 01/27/2022 MATRIX : Air UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 ANALYST : RC DILUTION FACTOR¹ : x1.91

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Duplicate Analysis of AAC Sample ID: 220168-27351

Analyte Compounds	Sample	Duplicate	RPD ²	Analyte Compounds (Continued)	Sample	Duplicate	RPD ²
4-BFB (surrogate standard)	9.28	9.50	2.3	1,2-Dichloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chlorodifluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Bromodichloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Bromodichloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Bromodichloromethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Propene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,4-Dioxane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,4-Dioxane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,4-Dioxane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorodifluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Trichloroethene (TCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Trichloroethene (TCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Trichloroethene (TCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dimethyl Ether	<srl< td=""><td><srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2,2,4-Trimethylpentane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chloromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Methyl Methacrylate	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorotetrafluoroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Heptane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Vinyl Chloride	<srl< td=""><td><srl< td=""><td>NA</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	cis-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acetaldehyde	<srl< td=""><td><srl< td=""><td>NA</td><td>4-Methyl-2-pentanone (MiBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>4-Methyl-2-pentanone (MiBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	4-Methyl-2-pentanone (MiBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Methanol J	7.31	6,20	16.4	trans-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1.3-Butadiene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,1,2-Trichloroethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Bromomethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Toluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Toluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Toluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chloroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Hexanone (MBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorofluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Dibromochloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Dibromochloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Dibromochloromethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Ethanol	<srl< td=""><td><srl< td=""><td>NA</td><td>1,2-Dibromoethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,2-Dibromoethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2-Dibromoethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Vinyl Bromide	<srl< td=""><td><srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Tetrachloroethene (PCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acrolein	<srl< td=""><td><srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Chlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acetone J	2.12	2.29	7.8	Ethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Frichlorofluoromethane	<srl< td=""><td><srl< td=""><td>NA NA</td><td>m & p-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA NA</td><td>m & p-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA NA	m & p-Xylene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
2-Propanol (IPA)	<srl< td=""><td><srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Bromoform	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acrylonitrile	<srl< td=""><td><srl< td=""><td>NA</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Styrene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
.1-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,1,2,2-Tetrachloroethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Methylene Chloride (DCM)	<srl< td=""><td><srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	o-Xylene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
FertButanol (TBA)	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1,2,3-Trichloropropane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1,2,3-Trichloropropane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2,3-Trichloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Allyl Chloride	<srl< td=""><td><srl< td=""><td>NA</td><td>Isopropylbenzene (Cumene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Isopropylbenzene (Cumene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Isopropylbenzene (Cumene)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Carbon Disulfide	<srl< td=""><td><srl< td=""><td>NA</td><td>α-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>α-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	α-Pinene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Trichlorotrifluoroethane	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>2-Chlorotoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>2-Chlorotoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Chlorotoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
rans-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>n-Propylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>n-Propylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	n-Propylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1.1-Dichloroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>4-Ethyltoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>4-Ethyltoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	4-Ethyltoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td><srl< td=""><td>NA</td><td>1,3,5-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,3,5-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,3,5-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Vinyl Acetate	<srl< td=""><td><srl< td=""><td>NA</td><td>β-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>β-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	β-Pinene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
2-Butanone (MEK)	<srl< td=""><td><srl< td=""><td>NA</td><td>1,2,4-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,2,4-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2,4-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
cis-1.2-Dichloroethene	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Hexane	<srl< td=""><td><srl< td=""><td>NA</td><td>1,3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,3-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chloroform	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1.4-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1.4-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1.4-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>Sec-ButylBenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>Sec-ButylBenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Sec-ButylBenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Ethyl Acetate	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1.2-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1.2-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1.2-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Tetrahydrofuran	· · · · · · · · · · · · · · · · · · ·	<srl <srl< td=""><td>NA</td><td>n-ButylBenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl 	NA	n-ButylBenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1,2-Dichloroethane	<srl< td=""><td></td><td>NA</td><td>1,2-Dibromo-3-Chloropropane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>		NA	1,2-Dibromo-3-Chloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1,1,1-Trichloroethane	< <u>SRL</u>	<srl< td=""><td>NA</td><td>1,2,4-Trichlorobenzene</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<>	NA	1,2,4-Trichlorobenzene	<srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td></srl<>	NA
Benzene	<srl< td=""><td><srl (CDI</srl </td><td>NA</td><td>Naphthalene</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<>	<srl (CDI</srl 	NA	Naphthalene	<srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td></srl<>	NA
Carbon Tetrachloride	<srl <srl< td=""><td><srl <srl< td=""><td>NA NA</td><td>Hexachlorobutadiene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA NA</td><td>Hexachlorobutadiene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<></srl 	NA NA	Hexachlorobutadiene	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td></srl<></srl 	NA

¹ Dilution factor is the product of the Canister Dilution Factor and the Analysis Dilution Factor.

² Relative Percent Difference (RPD) between Sample analysis and Duplicate analysis (acceptable range is <25%).

SRL - Sample Reporting Limit (minimum)

J - Estimated value between the detection limit and the minimum reporting limit, shown for duplication purposes only.

220 168

CHAIN OF CUSTODY AND ANALYSIS REQUEST – Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields.

Atmospheric Analysis and Consultin	ng · Phone: 80	5-650-1642 ·	Email: info@	aaclab.com	1534 East	man Ave Su	lite A, Ventu	ra, CA 93003	AAC Project No		
Client/Company Name	Project Nam	e				Anal	ysis Request	ed	d Send Report To (Name/Email/Ad		
Freestone	DTG			• •					Kira Mure	CV2	
Project Manager Name	Project Num	ber			2				kiranurray Ogofreestoren 100 Jadwin Ave, suitezzo Richland, WA 99352		
Kira Murray				· ·	2 4 N	-					
Furnaround Time	Sampler Nan	ne		-	a y				Send Invoice To	(Name/Email/Address)	
🗌 Rush 24 h 🛛 🖾 Same Day					HAT I				Kira Murra		
\Box Rush 48 h \Box 5 Days		Survey	21-9		1++		-		Kiramurray	y Dyofreestankce L	
\Box Rush 72 h X Normal	Print: Trc. Signature:	/////2>	•		EN S				PO Number		
			1		VOLS				LAB	USE ONLY	
Client Sample Name	Sample ID	Sampling Date	Sampling Time	Container Type/Qty	料 >	· • • • • •			Lab ID	Sample Received	
S \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5-1			Conister							
S-1 Vent		1/21/22	1249-		×	2734	4				
S-2 5' from vent	5-2	1/21/22	1251443	Conister T	×	27345					
S-3 15 from vent	5-3	1/21/22	1250-1445	Canister 1	×	27346			1	□Other	
S-3 15 from vent S-4 - Ptur venza poinch	5-4	1/21/22	1246-	conister,	X	27347				Temperature	
5-5 Boundary	5-5	17122	1300 1495	conister		2734B				C°C°C	
5-6 Boundary	5-6	1/21/22	1	conister	×	27349				ID	
5-7 Bounchry	5-7	1/21/22	1253-1448	CANISTER	×	27350				Initials	
5-8 Barrebry	5-8	1/21/22	1415-1233-	CONSTER	×	27351				Returned Eqmt	
			TM 1/21/2	conister	+-					Total cans:	
			ipin							Unused cans:	
· · ·										Flow Controllers:	
Client Notes/Special Instructions:							EDD?	LAB USE ONLY			
				• • •			□Yes	Notes:			
•							A No				
Relinquished By		Date	Received E		- 1	Rut	Data				
Print:		Date	Print:	ру .			Date				
ignature:		Time	Signature:		/		Time				
Relinquished By		Date	Received E				Date 1/2C/22				
Print:			Print:	11cm	1 10 1		Time 1231				
ignature:		Time	Signature:	// ChinA	Mril.		Time 101	 I 			

AAC COC Rev 3

Issued 02/04/2021

220 168

CHAIN OF CUSTODY AND ANALYSIS REQUEST – Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields. Atmospheric Analysi

Atmospheric Analysis and Consult	ing · Phone: 80	5-650-1642	· Email: info	Maaclah com	4524 5		omplete a	li relevant f	ields.			
Atmospheric Analysis and Consult Client/Company Name	Project Nam	ne	Lindii. Into	waaciab.com	• 1534 Eas	tman Ave S	buite A, Ve	ntura, CA 9	3003	AAC Project N	lo.:	
FRESTONE	DTG				Analysis Requested					Send Report To (Name/Email/Address)		
Project Manager Name	Project Num	ber		r .						Kira Mur	ren	
Kira Murray					10 N					Pranurrai	> @ and reasons	
Turnaround Time	Sampler News				+11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1					NO Jadwin Ave, Suitezse Exhlad, WA 99352 Send Invoice To (Mano/Email/Address)		
—	Sampler Name											
□ Rush 24 h □ Same Day □ Rush 48 h □ 5 Days	Print: Tracy Mallyver											
$\Box \operatorname{Rush} 72 h$		e Allo			1 1 -					Kiramyrray & gorreestoner		
	and and a second s				EU DE					Kirc Murray Sofreestonec Lirc Murray Sofreestonec 1100 Jodun Ave PO Number		
Client Sample Name	Sample ID	Sampling	Sampling	Container	VOLS					LAB USE ONLY		
$\leq \lambda$		Date	Time	Type/Oty	MA					Lab ID	Sample Received	
J-1 Vent	5-1	1/21/22	1249-	CONISTER	X	2734					via:	
S-2 5' from vent	5-2	1/21/22	125143	conster 1	×						GredEx	
5-5 15 tomavent	5-3	1121/22	1250-1445	Canister 1		27345						
5-4 -PTW 42427 alburch	5-4		1445		×	27346						
		1/21/22		conister 1	X	27347					Temperature	
2-3 Boundary	55	1/21/22	1300 195	conister	X	27348					- °C	
2-6 Boundary	5-6	121/22	1257-1446	conister	×		·				Thermometer	
-7 Bounchry	5-7	1/21/22	1253-	CANISTAT	×	27349	<u> </u>				1D	
D-8 Barrhay	5-8			CONSTER		27350					Initials	
3	50	1/CI/CC	1415-1233-	cont	×	27351					Returned Eqmt	
			TM	CONSTER	-						Total cans:	
· · · · · · · · · · · · · · · · · · ·			1/21/2						· · · ·	<u>- Malaking di sang</u> Dési di sangkarak		
				:							Unused cans:	
					· · · ·		·				Flow Controllers:	
lient Notes/Special Instructions:												
							EDD?	and the second	JSE ONLY			
			· · · · ·				□Yes XQNo	Note	S :			
elinquished By							Varia 10		• 1	2200 .201	[\$700)	
rint:	Date			Received By			Date		2 23 0 9 x 200 (x 2000			
gnature:		T	Print:		//		Juic				실행 2013년 2013년 1월 1997년 1987년 2013년 1월 1997년 1월 1987년 1월 1997년 1월 19	
elinquished By		Time Signature: Date Received By				Time		Time Data Time 1232				
rint:		Date Received By Print:				Date						
gnature:		Time Signature:			N-1	Rules T						
	······			1 mile	(d) 40 (d)	r	lime '0					
		1101	ፍ	J ALLE 1	- 6	Ente						
AC COC Rev 3		VYS	0	a cary d	ox	trute	chs					

Page_ of

A